A task offloading strategy considering forwarding errors based on cloud–fog collaboration | Cluster Computing Skip to main content

Advertisement

Log in

A task offloading strategy considering forwarding errors based on cloud–fog collaboration

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Fog computing, specialized in handling latency-sensitive and resource-hungry tasks, emerges as a pivotal paradigm for Internet of Things (IoT). Task offloading encompasses judgment and forwarding. However, current research predominantly concentrates on the former, neglecting forwarding and the potential occurrence of errors in this process. Additionally, existing models commonly employ continuous-time queuing models. To overcome these limitations, we propose a task offloading strategy considering forwarding errors based on cloud–fog collaboration. The strategy aims to offload tasks according to a predefined offloading ratio. We incorporate forwarding error ratios for all tasks, prioritize access for latency-sensitive tasks, and devise a discrete-time queueing model. Through numerical experiments, we analyze performance trends with offloading ratio. Additionally, a system profit function is employed to ascertain the optimal offloading ratio balancing the key metrics. Our findings underscore the significant advantages of cloud–fog collaboration over traditional pure cloud computing, notably increasing throughput rate while decreasing the blocking rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Algorithm 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

All relevant data are within the paper.

References

  1. Sanaz, T.A., Masoud, E.M.A., Hossein, R.M.: Machine learning-based computation offloading in edge and fog: a systematic review. Clust. Comput. 26(5), 3113–3144 (2023). https://doi.org/10.1007/s10586-023-04100-z

    Article  Google Scholar 

  2. Almashhadani, H.A., Deng, X., Abdul Latif, S.N., Ibrahim, M.M., Alshammari, A.H.: An edge-computing based task-unloading technique with privacy protection for Internet of connected vehicles. Wirel. Pers. Commun. 127(2), 1787–1808 (2022). https://doi.org/10.1007/s11277-021-08723-6

    Article  Google Scholar 

  3. Tan, Z., Qu, H., Zhao, J., Zhou, S., Wang, W.: UAV-aided edge/fog computing in smart IoT community for social augmented reality. IEEE Internet Things J. 7(6), 4872–4884 (2020). https://doi.org/10.1109/JIOT.2020.2971325

    Article  Google Scholar 

  4. Mao, Y., You, C., Zhang, J., Huang, K., Letaief, K.B.: A survey on mobile edge computing: the communication perspective. IEEE Commun. Surv. Tutor. 19(4), 2322–2358 (2017). https://doi.org/10.1109/COMST.2017.2745201

    Article  Google Scholar 

  5. Raju, M.R., Mothku, S.K.: Delay and energy aware task scheduling mechanism for fog-enabled IoT applications: a reinforcement learning approach. Comput. Netw. 224, 109603 (2023). https://doi.org/10.1016/j.comnet.2023.109603

    Article  Google Scholar 

  6. Sabireen, H., Neelanarayanan, V.J.I.E.: A review on fog computing: architecture, fog with IoT, algorithms and research challenges. ICT Express 7(2), 162–176 (2021). https://doi.org/10.1016/j.icte.2021.05.004

    Article  Google Scholar 

  7. Walia, G.K., Kumar, M., Gill, S.S.: AI-empowered fog/edge resource management for IoT applications: a comprehensive review, research challenges, and future perspectives. IEEE Commun. Surv. Tutor. 26(1), 619–669 (2024). https://doi.org/10.1109/COMST.2023.3338015

    Article  Google Scholar 

  8. Huang, M., Liu, W., Wang, T., Liu, A., Zhang, S.: A cloud-MEC collaborative task offloading scheme with service orchestration. IEEE Internet Things J. 7(7), 5792–5805 (2020). https://doi.org/10.1109/JIOT.2019.2952767

    Article  Google Scholar 

  9. Mann, Z.A.: Notions of architecture in fog computing. Computing 103(1), 51–73 (2021). https://doi.org/10.1007/s00607-020-00848-z

    Article  MathSciNet  Google Scholar 

  10. Benomar, Z., Campobello, G., Segreto, A., Battaglia, F., Longo, F., Merlino, G., Puliafito, A.: A fog-based architecture for latency-sensitive monitoring applications in industrial internet of things. IEEE Internet Things J. 10(3), 1908–1918 (2023). https://doi.org/10.1109/JIOT.2021.3138691

    Article  Google Scholar 

  11. Kumari, N., Yadav, A., Jana, P.K.: Task offloading in fog computing: a survey of algorithms and optimization techniques. Comput. Netw. 214, 109137 (2022). https://doi.org/10.1016/j.comnet.2022.109137

    Article  Google Scholar 

  12. Kang, J., Yu, H.: Mitigation technique for performance degradation of virtual machine owing to GPU pass-through in fog computing. J. Commun. Netw. 20(3), 257–265 (2018). https://doi.org/10.1109/JCN.2018.000038

    Article  Google Scholar 

  13. Mishra, S., Sahoo, M.N., Bakshi, S., Rodrigues, J.J.P.C.: Dynamic resource allocation in fog-cloud hybrid systems using multicriteria AHP techniques. IEEE Internet Things J. 7(9), 8993–9000 (2020). https://doi.org/10.1109/JIOT.2020.3001603

    Article  Google Scholar 

  14. Xu, X., Liu, Q., Qi, L., Yuan, Y., Dou, W., Liu, A.X.: A heuristic virtual machine scheduling method for load balancing in fog-cloud computing. In: 2018 IEEE 4th International Conference on Big Data Security on Cloud (BigDataSecurity), IEEE International Conference on High Performance and Smart Computing, (HPSC) and IEEE International Conference on Intelligent Data and Security (IDS), pp. 83–88 (2018). https://doi.org/10.1109/BDS/HPSC/IDS18.2018.00030

  15. Hu, Z., Wang, S., Hu, L., Deng, Y.: Optimization of task unloading strategy based on Game Theory in cloud edge collaborative system. In: Proceedings of the 8th International Conference on Computing and Artificial Intelligence. ICCAI ’22, pp. 228–234. Association for Computing Machinery, New York, NY, USA (2022). https://doi.org/10.1145/3532213.3532247

  16. Mahenge, M.P.J., Li, C., Sanga, C.A.: Collaborative mobile edge and cloud computing: tasks unloading for improving users’ quality of experience in resource-intensive mobile applications. In: 2019 IEEE 4th International Conference on Computer and Communication Systems (ICCCS), pp. 322–326 (2019). https://doi.org/10.1109/CCOMS.2019.8821787

  17. Liu, X., Zhang, H., Long, K., Nallanathan, A., Leung, V.C.M.: Energy efficient user association, resource allocation and caching deployment in fog radio access networks. IEEE Trans. Veh. Technol. 71(2), 1846–1856 (2022). https://doi.org/10.1109/TVT.2021.3131720

    Article  Google Scholar 

  18. Kim, J., Lee, W.: Feasibility study of 60 GHz millimeter-wave technologies for hyperconnected fog computing applications. IEEE Internet Things J. 4(5), 1165–1173 (2017). https://doi.org/10.1109/JIOT.2017.2672778

    Article  Google Scholar 

  19. Kaitovic, I., Malek, M.: Impact of failure prediction on availability: modeling and comparative analysis of predictive and reactive methods. IEEE Trans. Dependable Secure Comput. 17(3), 493–505 (2020). https://doi.org/10.1109/TDSC.2018.2806448

    Article  Google Scholar 

  20. Zhang, P., Chen, Y., Zhou, M., Xu, G., Huang, W., Al-Turki, Y., Abusorrah, A.: A fault-tolerant model for performance optimization of a fog computing system. IEEE Internet Things J. 9(3), 1725–1736 (2022). https://doi.org/10.1109/JIOT.2021.3088417

    Article  Google Scholar 

  21. Gai, K., Qin, X., Zhu, L.: An energy-aware high performance task allocation strategy in heterogeneous fog computing environments. IEEE Trans. Comput. 70(4), 626–639 (2021). https://doi.org/10.1109/TC.2020.2993561

    Article  Google Scholar 

  22. Kuang, Z., Li, L., Gao, J., Zhao, L., Liu, A.: Partial offloading scheduling and power allocation for mobile edge computing systems. IEEE Internet Things J. 6(4), 6774–6785 (2019). https://doi.org/10.1109/JIOT.2019.2911455

    Article  Google Scholar 

  23. Guo, H., Liu, J.: Collaborative computation offloading for multiaccess edge computing over fiber-wireless networks. IEEE Trans. Veh. Technol. 67(5), 4514–4526 (2018). https://doi.org/10.1109/TVT.2018.2790421

    Article  Google Scholar 

  24. Almutairi, J., Aldossary, M.: A novel approach for IoT tasks offloading in edge-cloud environments. Journal of Cloud Computing 10(1), 28 (2021). https://doi.org/10.1186/s13677-021-00243-9

    Article  Google Scholar 

  25. Liu, C., Wang, J., Zhou, L., Rezaeipanah, A.: Solving the multi-objective problem of IoT service placement in fog computing using cuckoo search algorithm. Neural Process. Lett. 54(3), 1823–1854 (2022). https://doi.org/10.1007/s11063-021-10708-2

    Article  Google Scholar 

  26. Raju, M.R., Mothku, S.K., Somesula, M.K.: MITS: Mobility-aware intelligent task scheduling in vehicular fog networks. IEEE Transactions on Vehicular Technology, 1–15 (2023) https://doi.org/10.1109/TVT.2023.3321806

  27. Raza, Z., Jangu, N.: Workload classification: For better resource management in fog-cloud environments. International Journal of Systems and Service-Oriented Engineering (IJSSOE) 12(1), 1–14 (2022). https://doi.org/10.4018/IJSSOE.297135

    Article  Google Scholar 

  28. Jairam Naik, K.: Classification and scheduling of information-centric IoT applications in cloud-fog computing architecture (CS_IcIoTA). In: 2020 14th International Conference on Innovations in Information Technology (IIT), 82–87 (2020). https://doi.org/10.1109/IIT50501.2020.9299006

  29. Kanbar, A.B., Faraj, K.: Region aware dynamic task scheduling and resource virtualization for load balancing in IoT-fog multi-cloud environment. Futur. Gener. Comput. Syst. 137, 70–86 (2022). https://doi.org/10.1016/j.future.2022.06.005

    Article  Google Scholar 

  30. Mori, T., Utsunomiya, Y., Tian, X., Okuda, T.: Queueing theoretic approach to job assignment strategy considering various inter-arrival of job in fog computing. In: 2017 19th Asia-Pacific Network Operations and Management Symposium (APNOMS), 151–156 (2017). https://doi.org/10.1109/APNOMS.2017.8094195

  31. Mas, L., Vilaplana, J., Mateo, J., Solsona, F.: A queuing theory model for fog computing. J. Supercomput. 78(8), 11138–11155 (2022). https://doi.org/10.1007/s11227-022-04328-3

    Article  Google Scholar 

  32. Jiang, Y., Peng, A., Wan, C., Cui, Y., You, X., Zheng, F.-C., Jin, S.: Analysis and optimization of cache-enabled fog radio access networks: Successful transmission probability, fractional offloaded traffic and delay. IEEE Trans. Veh. Technol. 69(5), 5219–5231 (2020). https://doi.org/10.1109/TVT.2020.2981122

    Article  Google Scholar 

  33. Ko, H., Kyung, Y.: Performance analysis and optimization of delayed offloading system with opportunistic fog node. IEEE Trans. Veh. Technol. 71(9), 10203–10208 (2022). https://doi.org/10.1109/TVT.2022.3179658

    Article  Google Scholar 

  34. Tran, T.X., Hajisami, A., Pandey, P., Pompili, D.: Collaborative mobile edge computing in 5G networks: New paradigms, scenarios, and challenges. IEEE Commun. Mag. 55(4), 54–61 (2017). https://doi.org/10.1109/MCOM.2017.1600863

    Article  Google Scholar 

  35. Sarkar, S., Chatterjee, S., Misra, S.: Assessment of the suitability of fog computing in the context of internet of things. IEEE Transactions on Cloud Computing 6(1), 46–59 (2018). https://doi.org/10.1109/TCC.2015.2485206

    Article  Google Scholar 

  36. Wang, Y., Han, X., Jin, S.: MAP based modeling method and performance study of a task offloading scheme with time-correlated traffic and VM repair in MEC systems. Wireless Netw. 29(1), 47–68 (2023). https://doi.org/10.1007/s11276-022-03099-2

    Article  Google Scholar 

  37. Chauhan, N., Banka, H., Agrawal, R.: Adaptive bandwidth adjustment for resource constrained services in fog queueing system. Clust. Comput. 24(4), 3837–3850 (2021). https://doi.org/10.1007/s10586-021-03378-1

    Article  Google Scholar 

  38. Khan, S., Zheng, J., Khan, S., Masood, Z., Akhter, M.P.: Dynamic offloading technique for real-time edge-to-cloud computing in heterogeneous MEC-MCC and IoT devices. Internet of Things 24, 100996 (2023). https://doi.org/10.1016/j.iot.2023.100996

    Article  Google Scholar 

  39. Kumar, R., Soodan, B.S., Kuaban, G.S., Czekalski, P., Sharma, S.: Performance analysis of a cloud computing system using queuing model with correlated task reneging. J. Phys: Conf. Ser. 2091(1), 012003 (2021). https://doi.org/10.1088/1742-6596/2091/1/012003

    Article  Google Scholar 

  40. Kotteswari, K., Bharathi, A.: Performance evaluation of IaaS cloud using stochastic neural network. Journal of Intelligent & Fuzzy Systems 43(4), 4613–4628 (2022). https://doi.org/10.3233/JIFS-220501

    Article  Google Scholar 

  41. Salaht, F.A., Desprez, F., Lebre, A.: An overview of service placement problem in fog and edge computing. ACM Comput. Surv. 53(3), 1–35 (2020). https://doi.org/10.1145/3391196

    Article  Google Scholar 

Download references

Funding

This work was supported by the Fundamental Research Funds for the Central Universities (No. N2323024), China.

Author information

Authors and Affiliations

Authors

Contributions

Y. Z. and H. G. conceived and designed the experiments, performed the experiments, analyzed and interpreted the data, and wrote the paper. S. Y. and Y. L. performed the experiments, analyzed and interpreted the data, and wrote the paper. All authors commented on previous versions of the manuscript, read and approved the final manuscript.

Corresponding author

Correspondence to Yuan Zhao.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare that are relevant to the content of this article.

Ethical approval

No moral or ethical declaration is violated or involved in this investigation.

Informed consent

Each author consented to the publication of the work after learning about it.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Gao, H., Yuan, S. et al. A task offloading strategy considering forwarding errors based on cloud–fog collaboration. Cluster Comput 27, 8531–8555 (2024). https://doi.org/10.1007/s10586-024-04439-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-024-04439-x

Keywords

Navigation