Orchestrating real-time IoT workflows in a fog computing environment utilizing partial computations with end-to-end error propagation | Cluster Computing Skip to main content
Log in

Orchestrating real-time IoT workflows in a fog computing environment utilizing partial computations with end-to-end error propagation

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

With the explosive growth of the Internet of Things (IoT), fog computing emerged as a new paradigm, in an attempt to minimize network latency. Fog computing extends the cloud to the network edge, closer to where the IoT data are generated. Typically, fog resources are of limited capacity. On the other hand, IoT applications are becoming more and more complex and computationally demanding, requiring a certain level of Quality of Service (QoS) within strict time constraints. In such a real-time setting, it is often more desirable for a job to meet its deadline by producing an approximate—but still of acceptable quality—result, rather than producing an overdue precise result. Based on this concept, in this paper we examine the orchestration of real-time IoT workflows in a heterogeneous fog computing environment, utilizing partial computations. When a workflow task produces an imprecise result, the error may be propagated not only to its immediate child tasks, but also across subsequent successor tasks of the workflow, ultimately affecting its end-result. The proposed scheduling technique is compared to a baseline algorithm, where partial computations are not used, under various result precision thresholds and input error propagation probabilities. The simulation results reveal that the proposed heuristic can provide on average a 32.71% lower deadline miss ratio than the baseline policy, by trading off an average result precision of 2.43%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Aburukba, R.O., AliKarrar, M., Landolsi, T., El-Fakih, K.: Scheduling Internet of Things requests to minimize latency in hybrid fog-cloud computing. Future Gen. Comput. Syst. 111, 539–551 (2020). https://doi.org/10.1016/j.future.2019.09.039

    Article  Google Scholar 

  2. Ahmed, O.H., Lu, J., Ahmed, A.M., Rahmani, A.M., Hosseinzadeh, M., Masdari, M.: Scheduling of scientific workflows in multi-fog environments using Markov models and a hybrid salp swarm algorithm. IEEE Access 8, 189404–189422 (2020). https://doi.org/10.1109/ACCESS.2020.3031472

    Article  Google Scholar 

  3. Al-Bzoor, M., Al-assem, E., Alawneh, L., Jararweh, Y.: Autonomous underwater vehicles support for enhanced performance in the internet of underwater things. Trans. Emerg. Telecommun. Technol. 32(3), e4225 (2021). https://doi.org/10.1002/ett.4225

    Article  Google Scholar 

  4. Alizadeh, M.R., Khajehvand, V., Rahmani, A.M., Akbari, E.: Task scheduling approaches in fog computing: a systematic review. Int. J. Commun. Syst. 33(16), e4583 (2020). https://doi.org/10.1002/dac.4583

    Article  Google Scholar 

  5. Buttazzo, G.C.: Hard Real-Time Computing Systems: Predictable Scheduling Algorithms and Applications, 3rd edn. Springer, Berlin (2011). https://doi.org/10.1007/978-1-4614-0676-1

    Book  MATH  Google Scholar 

  6. Cao, K., Zhou, J., Xu, G., Wei, T., Hu, S.: Exploring renewable-adaptive computation offloading for hierarchical QoS optimization in fog computing. IEEE Trans. Comput. Aid. Des. Integr. Circuits Syst. 39(10), 2095–2108 (2020). https://doi.org/10.1109/TCAD.2019.2957374

    Article  Google Scholar 

  7. Chen, Y.: Service-Oriented Computing and System Integration: Software, IoT, Big Data, and AI as Services, 7th edn. Kendall Hunt Publishing, Dubuque (2020)

    Google Scholar 

  8. Chen, Y., Hu, H.: Internet of Intelligent Things and Robot as a Service. Simul. Model. Pract. Theor. 34, 159–171 (2013). https://doi.org/10.1016/j.simpat.2012.03.006

    Article  Google Scholar 

  9. Choudhari, T., Moh, M., Moh, T.S.: Prioritized task scheduling in fog computing. In: Proceedings of the 2018 Annual ACM Southeast Conference (ACMSE’18), pp. 22:1–22:8 (2018). https://doi.org/10.1145/3190645.3190699

  10. Cisco: Fog computing and the Internet of Things: extend the cloud to where the things are. Tech. Rep. C11-734435-00, Cisco Systems, Inc. (2015)

  11. De Maio, V., Kimovski, D.: Multi-objective scheduling of extreme data scientific workflows in fog. Future Gen. Comput. Syst. 106, 171–184 (2020). https://doi.org/10.1016/j.future.2019.12.054

    Article  Google Scholar 

  12. De Souza Toniolli, J.L., Jaumard, B.: Resource allocation for multiple workflows in cloud-fog computing systems. In: Proceedings of the 12th IEEE/ACM International Conference on Utility and Cloud Computing Companion (UCC’19 Companion), pp. 77–84 (2019). https://doi.org/10.1145/3368235.3368846

  13. Ding, R., Li, X., Liu, X., Xu, J.: A cost-effective time-constrained multi-workflow scheduling strategy in fog computing. In: Proceedings of the 16th International Conference on Service-Oriented Computing (ICSOC’18), pp. 194–207 (2018). https://doi.org/10.1007/978-3-030-17642-6_17

  14. Drozdowski, M.: Scheduling for Parallel Processing, 1st edn. Springer, Berlin (2009). https://doi.org/10.1007/978-1-84882-310-5

    Book  MATH  Google Scholar 

  15. Esmaili, A., Nazemi, M., Pedram, M.: Energy-aware scheduling of task graphs with imprecise computations and end-to-end deadlines. ACM Trans. Des. Autom. Electron. Syst. 25(1), 11:1–11:21 (2019). https://doi.org/10.1145/3365999

    Article  Google Scholar 

  16. Feng, W.C., Liu, J.W.S.: Algorithms for scheduling real-time tasks with input error and end-to-end deadlines. IEEE Trans. Softw. Eng. 23(2), 93–106 (1997). https://doi.org/10.1109/32.585499

    Article  Google Scholar 

  17. Gazori, P., Rahbari, D., Nickray, M.: Saving time and cost on the scheduling of fog-based IoT applications using deep reinforcement learning approach. Future Gen. Comput. Syst. 110, 1098–1115 (2020). https://doi.org/10.1016/j.future.2019.09.060

    Article  Google Scholar 

  18. Gupta, H., Vahid Dastjerdi, A., Ghosh, S.K., Buyya, R.: iFogSim: A toolkit for modeling and simulation of resource management techniques in the Internet of Things, edge and fog computing environments. Softw. Pract. Exp. 47(9), 1275–1296 (2017). https://doi.org/10.1002/spe.2509

    Article  Google Scholar 

  19. Iorga, M., Feldman, L., Barton, R., Martin, M.J., Goren, N., Mahmoudi, C.: Fog computing conceptual model. Tech. Rep. 500-325, National Institute of Standards and Technology, U.S. Department of Commerce (2018). https://doi.org/10.6028/NIST.SP.500-325

  20. Kabirzadeh, S., Rahbari, D., Nickray, M.: A hyper heuristic algorithm for scheduling of fog networks. In: Proceedings of the 21st Conference of Open Innovations Association (FRUCT’17), pp. 148–155 (2017). https://doi.org/10.23919/FRUCT.2017.8250177

  21. Kołodziej, J.: Evolutionary Hierarchical Multi-Criteria Metaheuristics for Scheduling in Large-Scale Grid Systems, 1st edn. Springer, Berlin (2012). https://doi.org/10.1007/978-3-642-28971-2

    Book  Google Scholar 

  22. Lin, K.J., Natarajan, S., Liu, J.W.S.: Imprecise results: utilizing partial computations in real-time systems. In: Proceedings of the 8th IEEE Real-Time Systems Symposium (RTSS’87), pp. 210–217 (1987)

  23. Liu, X., Fan, L., Xu, J., Li, X., Gong, L., Grundy, J., Yang, Y.: FogWorkflowSim: An automated simulation toolkit for workflow performance evaluation in fog computing. In: Proceedings of the 34th IEEE/ACM International Conference on Automated Software Engineering (ASE’19), pp. 1114–1117 (2019). https://doi.org/10.1109/ASE.2019.00115

  24. Matrouk, K., Alatoun, K.: Scheduling algorithms in fog computing: A survey. Int. J. Netw. Distr. Comp. 9(1), 59–74 (2021). https://doi.org/10.2991/ijndc.k.210111.001

    Article  Google Scholar 

  25. Mo, L., Kritikakou, A.: Mapping imprecise computation tasks on cyber-physical systems. Peer-to-Peer Netw. Appl. 12(6), 1726–1740 (2019). https://doi.org/10.1007/s12083-019-00749-9

    Article  Google Scholar 

  26. Mo, L., Kritikakou, A., Sentieys, O., Cao, X.: Real-time imprecise computation tasks mapping for DVFS-enabled networked systems. IEEE Internet Things J. 8(10), 8246–8258 (2021). https://doi.org/10.1109/JIOT.2020.3044910

    Article  Google Scholar 

  27. Mora Mora, H., Gil, D., Colom López, J.F., Signes Pont, M.T.: Flexible framework for real-time embedded systems based on mobile cloud computing paradigm. Mob. Inf. Syst. 2015, 652462:1–652462:14 (2015). https://doi.org/10.1155/2015/652462

    Article  Google Scholar 

  28. Naha, R.K., Garg, S., Chan, A., Battula, S.K.: Deadline-based dynamic resource allocation and provisioning algorithms in fog-cloud environment. Future. Gen. Comput. Syst. 104, 131–141 (2020). https://doi.org/10.1016/j.future.2019.10.018

    Article  Google Scholar 

  29. OpenFog: OpenFog Architecture Overview. Tech. Rep. OPFWP001.0216, OpenFog Consortium Architecture Working Group (2016)

  30. Park, M., Han, S., Kim, H., Cho, S., Cho, Y.: Comparison of tie-breaking policies for real-time scheduling on multiprocessor. In: Proceedings of the 2004 International Conference on Embedded and Ubiquitous Computing (EUC’04), pp. 174–182 (2004). https://doi.org/10.1007/978-3-540-30121-9_17

  31. Pham, X.Q., Huh, E.N.: Towards task scheduling in a cloud-fog computing system. In: Proceedings of the 18th Asia-Pacific Network Operations and Management Symposium (APNOMS’16), pp. 1–4 (2016). https://doi.org/10.1109/APNOMS.2016.7737240

  32. Pham, X.Q., Man, N.D., Tri, N.D.T., Thai, N.Q., Huh, E.N.: A cost- and performance-effective approach for task scheduling based on collaboration between cloud and fog computing. Int. J. Distrib. Sens. Netw. 13(11), 1–16 (2017). https://doi.org/10.1177/1550147717742073

    Article  Google Scholar 

  33. Puliafito, C., Mingozzi, E., Longo, F., Puliafito, A., Rana, O.: Fog computing for the Internet of Things: A survey. ACM Trans. Internet Technol. 19(2), 18:1–18:41 (2019). https://doi.org/10.1145/3301443

    Article  Google Scholar 

  34. Ravindran, R., Krishna, C.M., Koren, I., Koren, Z.: Scheduling imprecise task graphs for real-time applications. Int. J. Embed. Syst. 6(1), 73–85 (2014). https://doi.org/10.1504/IJES.2014.060919

    Article  Google Scholar 

  35. Shioura, A., Shakhlevich, N.V., Strusevich, V.A.: Preemptive models of scheduling with controllable processing times and of scheduling with imprecise computation: A review of solution approaches. Eur. J. Oper. Res. 266(3), 795–818 (2018). https://doi.org/10.1016/j.ejor.2017.08.034

    Article  MathSciNet  MATH  Google Scholar 

  36. Stavrinides, G.L., Karatza, H.D.: Scheduling multiple task graphs with end-to-end deadlines in distributed real-time systems utilizing imprecise computations. J. Syst. Softw. 83(6), 1004–1014 (2010). https://doi.org/10.1016/j.jss.2009.12.025

    Article  Google Scholar 

  37. Stavrinides, G.L., Karatza, H.D.: The impact of input error on the scheduling of task graphs with imprecise computations in heterogeneous distributed real-time systems. In: Proceedings of the 18th International Conference on Analytical and Stochastic Modelling Techniques and Applications (ASMTA’11), pp. 273–287 (2011). https://doi.org/10.1007/978-3-642-21713-5_20

  38. Stavrinides, G.L., Karatza, H.D.: Scheduling multiple task graphs in heterogeneous distributed real-time systems by exploiting schedule holes with bin packing techniques. Simul. Model. Pract. Theor. 19(1), 540–552 (2011). https://doi.org/10.1016/j.simpat.2010.08.010

    Article  Google Scholar 

  39. Stavrinides, G.L., Karatza, H.D.: Scheduling real-time DAGs in heterogeneous clusters by combining imprecise computations and bin packing techniques for the exploitation of schedule holes. Future Gen. Comput. Syst. 28(7), 977–988 (2012). https://doi.org/10.1016/j.future.2012.03.002

    Article  Google Scholar 

  40. Stavrinides, G.L., Karatza, H.D.: A cost-effective and QoS-aware approach to scheduling real-time workflow applications in PaaS and SaaS clouds. In: Proceedings of the 3rd International Conference on Future Internet of Things and Cloud (FiCloud’15), pp. 231–239 (2015). https://doi.org/10.1109/FiCloud.2015.93

  41. Stavrinides, G.L., Karatza, H.D.: Energy-aware scheduling of real-time workflow applications in clouds utilizing DVFS and approximate computations. In: Proceedings of the IEEE 6th International Conference on Future Internet of Things and Cloud (FiCloud’18), pp. 33–40 (2018). https://doi.org/10.1109/FiCloud.2018.00013

  42. Stavrinides, G.L., Karatza, H.D.: Cost-effective utilization of complementary cloud resources for the scheduling of real-time workflow applications in a fog environment. In: Proceedings of the 7th International Conference on Future Internet of Things and Cloud (FiCloud’19), pp. 1–8 (2019). https://doi.org/10.1109/FiCloud.2019.00009

  43. Stavrinides, G.L., Karatza, H.D.: An energy-efficient, QoS-aware and cost-effective scheduling approach for real-time workflow applications in cloud computing systems utilizing DVFS and approximate computations. Future Gen. Comput. Syst. 96, 216–226 (2019). https://doi.org/10.1016/j.future.2019.02.019

    Article  Google Scholar 

  44. Stavrinides, G.L., Karatza, H.D.: A hybrid approach to scheduling real-time IoT workflows in fog and cloud environments. Multimed. Tools Appl. 78(17), 24639–24655 (2019). https://doi.org/10.1007/s11042-018-7051-9

    Article  Google Scholar 

  45. Stavrinides, G.L., Karatza, H.D.: Cost-aware cloud bursting in a fog-cloud environment with real-time workflow applications. Concurr. Comput. Pract. Exp. (2020). https://doi.org/10.1002/cpe.5850

  46. Stavrinides, G.L., Karatza, H.D.: Orchestration of real-time workflows with varying input data locality in a heterogeneous fog environment. In: Proceedings of the Fifth International Conference on Fog and Mobile Edge Computing (FMEC’20), pp. 202–209 (2020). https://doi.org/10.1109/FMEC49853.2020.9144824

  47. Wainer, G., Moallemi, M.: Designing real-time systems using imprecise discrete-event system specifications. Softw. Pract. Exp. 50(8), 1327–1344 (2020). https://doi.org/10.1002/spe.2831

    Article  Google Scholar 

  48. Wu, H.Y., Lee, C.R.: Energy efficient scheduling for heterogeneous fog computing architectures. In: Proceedings of the 42nd IEEE Annual Computer Software and Applications Conference (COMPSAC’18), pp. 555–560 (2018). https://doi.org/10.1109/COMPSAC.2018.00085

  49. Xu, J., Hao, Z., Zhang, R., Sun, X.: A method based on the combination of laxity and ant colony system for cloud-fog task scheduling. IEEE Access 7, 116218–116226 (2019). https://doi.org/10.1109/ACCESS.2019.2936116

    Article  Google Scholar 

  50. Yao, S., Hao, Y., Zhao, Y., Shao, H., Liu, D., Liu, S., Wang, T., Li, J., Abdelzaher, T.: Scheduling real-time deep learning services as imprecise computations. In: Proceedings of the IEEE 26th International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA’20), pp. 1–10 (2020). https://doi.org/10.1109/RTCSA50079.2020.9203676

  51. Yu, K.P., Tan, L., Aloqaily, M., Yang, H., Jararweh, Y.: Blockchain-enhanced data sharing with traceable and direct revocation in IIoT. IEEE Trans. Ind. Inf. (2021). https://doi.org/10.1109/TII.2021.3049141

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgios L. Stavrinides.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stavrinides, G.L., Karatza, H.D. Orchestrating real-time IoT workflows in a fog computing environment utilizing partial computations with end-to-end error propagation. Cluster Comput 24, 3629–3650 (2021). https://doi.org/10.1007/s10586-021-03327-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-021-03327-y

Keywords

Navigation