Motion vector detection based on local autocorrelation coefficient | Cluster Computing Skip to main content
Log in

Motion vector detection based on local autocorrelation coefficient

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

This paper introduced local autocorrelation (LAC) to the preprocessing of motion vector detection in order to increase the detection accuracy of the moving vector. We applied LAC coefficient, Sobel operator and moving average calculation to motion vector detection, and Peak Signal to Noise Ratio is used to quantitative evaluation and analysis of motion vector detection accuracy. LAC optimum parameters corresponding to motion vector detection are obtained by a comparative experiment. LAC with optimum parameters achieve higher detection accuracy for the two kinds of video image with illumination changes and without illumination changes. The effectiveness of the LAC coefficient as the preprocessing algorithm of motion vector detection is verified, and the accuracy of the motion vector detection is improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Su, Y., Zhang, C., Zhang, C.: A video steganalytic algorithm againstmotion-vector-based steganography. Signal Process. 91(8), 1901–1909 (2011)

    Article  Google Scholar 

  2. Chun, J.B., Jung, H.: Suppressing rolling-shutter distortion of CMOS image sensors by motion vector detection. IEEE Trans. Consum. Electron. 54(4), 1479–1487 (2008)

    Article  Google Scholar 

  3. Jahne, B.: Noise equalisation and quasi loss-less image data compression–or how many bits needs an image sensor. Technisches Messen 83(1), 16–24 (2016)

    Article  Google Scholar 

  4. Watkins, Y.Z., Sayeh, M.R.: Image data compression and noisy channel error correction using deep neural network. Proced. Comput. Sci. 95, 145–152 (2016)

  5. Khan, A., Khan, A., Khan, M., Uzair, M.: Lossless image compression: application of bi-level burrows wheeler compression algorithm (BBWCA) to 2-D data. Multimed. Tools Appl. 76(10), 1–26 (2017)

    Article  Google Scholar 

  6. Li, R., Gan, Z.L., Cui, Z.G., Zhu, X.C.: Joint motion-compensated interpolation using eight-neighbor block motion vectors. IEICE Trans. Inf. Syst. E96–D(4), 976–979 (2013)

    Article  Google Scholar 

  7. Wang, K., Zhao, H., Wang, H.: Video steganalysis against motion vector-based steganography by adding or subtracting one motion vector value. IEEE Trans. Inf. Forensic Secur. 9(5), 741–751 (2014)

    Article  Google Scholar 

  8. Zhu, H., Fan, H., Ye, F., Zhao, X.: Improving vehicle detection accuracy based on vehicle shadow and superposition elimination. Open Mech. Eng. J. 9(1), 1039–1044 (2015)

    Article  Google Scholar 

  9. Yoo, D.G., Kang, S.J., Kim, Y.H.: Direction-select motion estimation for motion-compensated frame rate up-conversion. J. Disp. Technol. 9(10), 840–850 (2013)

    Article  Google Scholar 

  10. Zhu, H., Fan, H., Ye, F., Zhu, S., Gan, P.: A novel method for moving vehicle tracking based on horizontal edge identification and local autocorrelation images. DYNA 91(1), 61–68 (2016)

    Article  Google Scholar 

  11. Zhang, B., Wang, L., Wang, Z., Qiao, Y., Wang, H.: Real-time action recognition with enhanced motion vector CNNs. Comput. Vis. Pattern Recognit., 2718–2726 (2016)

  12. He, P., Jiang, X., Sun, T., Wang, S.: Double compression detection based on local motion vector field analysis in static-background videos. J. Vis. Commun. Image Represent. 35, 55–66 (2016)

    Article  Google Scholar 

  13. Sur, A., Krishna, S.V.M., Sahu, N., Rana, S.: Detection of motion vector based video steganography. Multimed. Tools Appl. 74(23), 0479–10494 (2015)

    Article  Google Scholar 

  14. Li, R., Gan, Z., Cui, Z., Tang, G., Zhu, X.: Multi-channel mixed-pattern based frame rate up-conversion using spatio-temporal motion vector refinement and dual-weighted overlapped block motion compensation. J. Disp. Technol. 10(12), 1010–1023 (2014)

    Article  Google Scholar 

  15. Amirpour, H., Mousavinia, A.: A dynamic search pattern motion estimation algorithm using prioritized motion vectors. Signal Image Video Process. 10(8), 1–8 (2016)

    Article  Google Scholar 

  16. Chen, K., Zhou, Z., Wu, W.: Progressive motion vector clustering for motion estimation and auxiliary tracking. ACM Trans. Multimed. Comput. Commun. Appl. 11(3), 1–23 (2015)

    Article  Google Scholar 

  17. Zhu, H., Koga, T.: Face detection based on AdaBoost algorithm with Local AutoCorrelation image. IEICE Electron. Express 7(15), 1125–1131 (2010)

    Article  Google Scholar 

  18. Fan, H., Zhu, H.: Separation and extraction of moving vehicles in traffic images based on horizontal roof edges. Int. Rev. Comput. Softw. 7(3), 1347–1351 (2012)

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Changzhou Science and Technology Support Project (CE20175026, CE20165028) and Program of six talent tops of Jiangsu Province (DZXX-031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongjin Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, H., Zhu, H. Motion vector detection based on local autocorrelation coefficient. Cluster Comput 22 (Suppl 5), 11633–11639 (2019). https://doi.org/10.1007/s10586-017-1428-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-017-1428-9

Keywords

Navigation