Combining the big data analysis and the threat intelligence technologies for the classified protection model | Cluster Computing Skip to main content

Advertisement

Log in

Combining the big data analysis and the threat intelligence technologies for the classified protection model

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

In order to effectively deal with the APT and 0 day attacks, a new classified protection model of information system is proposed by combining the big data analysis and the threat intelligence technologies. And immune factors network algorithm is proposed based on the classified model. So that the useful information can be actively accessed and extracted from a large number of security information. The consequences of the threat information and the effective measures can be timely analysis, and the threat intelligence of classified protection can be timely shared. So the emergency response, bulletins and early warning can be timely done.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lenders, V., Tanner, A., Blarer, A.: Gaining an edge in cyberspace with advanced situational awareness. IEEE Secur. Priv. 13(2), 65–74 (2015)

    Article  Google Scholar 

  2. Erbacher, R., Frincke, D., Wong, P., Moody, S.: etl: cognitive task analysis of network analysts and managers for network situational awareness. Proc. SPIE Int. Soc. Opt. Eng. 7530(1), 423–426 (2010)

    Google Scholar 

  3. Aleroud, A., Karabatis, G., Sharma, P., He, P.: Context and semantics for detection of cyber attacks. Int. J. Inf. Comput. Secur. 6(1), 63–92 (2014)

    Google Scholar 

  4. ISO 7498-2:1989, Information processing system—Open Systems Interconnection—Basic Reference Model - Part2: Security architecture (1989)

  5. Bass, T.: Intrusion detection system and multi-sensor data fusion. Commun. ACM 43(4), 99–105 (2000)

    Article  Google Scholar 

  6. ISO/IEC 21827:2008, Information technology—Security techniques—Systems Security Engineering—Capability Maturity Model (2008)

  7. Information Assurance Technical Framework (IATF), V3.1, NSA (2003)

  8. GB/T 22239-2008 Baseline for classified protection of information system (2008)

  9. GB/T 22240-2008 Information security technology—Classification guide for classified protection of information system (2008)

  10. GB/T 25058-2010 Implementation guide for classified protection of information system (2010)

  11. GB/T 28448-2012 Testing and evaluation requirement for classified protection of information system (2012)

  12. GB/T 28449-2012 Testing and evaluation process guide for classified protection of information system security (2012)

  13. Tao, Y., Liu, Z., Zhang, Z., et al.: Research on network attack situation niching model based on FNN theory. Chin. High Technol. Lett. 20(6), 680–684 (2010)

    Google Scholar 

  14. Ibrahim Salim, M., Abdul Razak, T.: A study on IDS for preventing denial of service attack using outliers techniques. 2016 IEEE International Conference on Engineering and Technology. IEEE Conference Publication, pp. 768–775 (2016)

  15. Boldyreva, A., Lychev, R.: Provable security of (S0-BGP) and other path vector protocols: model, analysis, and extensions. In: Proceedings of the 19th ACM Conference on Computer and Communications Security, Sheraton Raleigh Hotel. Raleigh, USA, pp. 541–552 (2012)

  16. Zhang, P., Zhu, X., Shi, Y., et al.: Robust ensemble learning for mining noisy data streams. Decision Support Syst. 50(2), 469–479 (2011)

    Article  Google Scholar 

  17. Zhang, Z.H., Qian, S.Q.: Artificial immune system in dynamic environments solving time-varying non-linear constrained multi-objective problems. Soft Comput. 15(7), 1333–1349 (2011)

    Article  Google Scholar 

  18. Zhu, Bin, Ghorbani, A.A.: Alert correlation for extracting attack strategies. Int. J. Netw. Secur. 32(3), 244–258 (2006)

    Google Scholar 

  19. Yanga, S.J., Stotzb, A., Holsoppleb, J., Suditc, M., Kuhld, M.: High level information fusion for tracking and projection of multistage cyber attacks. Inf. Fusion 10(1), 107–121 (2009)

    Article  Google Scholar 

  20. Hariri, S., Qu, G.Z., Dharmagadda, T., et al.: Impact analysis of faults and attacks in large-scale networks. IEEE Secur. Privacy 1(5), 49–54 (2003)

    Article  Google Scholar 

  21. Edge, K.S., Lamont, G.B., Raines, R.A.: A retrovirus inspired algorithm for virus detection & optimization. In: Proceedings of the 8th Annual Genetic and Evolutionary Computation Conference. Seattle WA, pp. 103–110 (2006)

  22. Dipankar, D., Fabio, G.: An immunity-based technique to characterize intrusions in computer networks. IEEE Trans. Evol. Comput. 6(3), 1081–1088 (2002)

    Google Scholar 

  23. Allwinkle, S., Cruickshank, P.: Creating smarter cities: an overview. J. Urban Technol. 18(2), 1–16 (2011)

    Article  Google Scholar 

  24. Yovanof, G.S., Hazapis, G.N.: An architectural framework and enabling wireless technologies for digital cities & intelligent urban environments. Wirel. Pers. Commun. 49(3), 445–463 (2009)

    Article  Google Scholar 

  25. Wang, Y.Z., Jin, X.L., Cheng, X.Q.: Network big data: present and future. Chin. J. Comput. 36(6), 1125–1138 (2013)

    Article  Google Scholar 

  26. Deakin, M., Al Waer, H.: From intelligent to smart cities. Intell. Build. Int. 3(3), 140–152 (2011)

    Article  Google Scholar 

  27. Hu, C., Bai, X., Qi, L., Chen, P., Xue, G., Mei, L.: Vehicle color recognition with spatial pyramid deep learning. IEEE Trans. Intell. Transp. Syst. 16(5), 2925–2934 (2015)

    Article  Google Scholar 

  28. Mackey, L., Talwalkar, A., Jordan, M.I.: Divide-and-conquer matrix factorization. In: Proceeding of the 25th Annual Conference on Neural Information Processing Systems(NIPS), pp. 1134–1142. Granada, Spain (2011)

  29. Li, G.J., Cheng, X.Q.: Research status and scientific thinking of big data. Bull. Chin. Acad. Sci. 27(6), 647–657 (2012)

    Google Scholar 

  30. Akhilesh, B., Sudha, R.: IAIS: A methodology to enable interagency information sharing in e-Government. J. Database Manag. 14(4), 59–80 (2003)

    Article  Google Scholar 

  31. Hu, C., Bai, X., Qi, L., Wang, X., Xue, G., Mei, L.: Learning discriminative pattern for real-time car brand recognition. EEE Trans. Intell. Transp. Syst. 16(6), 3170–3181 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the National Development and Reform Commission Information security special item “national engineering laboratory for key technology of classified information security protection”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, Y., Zhang, Yx., Ma, Sy. et al. Combining the big data analysis and the threat intelligence technologies for the classified protection model. Cluster Comput 20, 1035–1046 (2017). https://doi.org/10.1007/s10586-017-0813-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-017-0813-8

Keywords

Navigation