A distributed clustering algorithm for large-scale dynamic networks | Cluster Computing Skip to main content
Log in

A distributed clustering algorithm for large-scale dynamic networks

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

We propose an algorithm that builds and maintains clusters over a network subject to mobility. This algorithm is fully decentralized and makes all the different clusters grow concurrently. The algorithm uses circulating tokens that collect data and move according to a random walk traversal scheme. Their task consists in (i) creating a cluster with the nodes it discovers and (ii) managing the cluster expansion; all decisions affecting the cluster are taken only by a node that owns the token. The size of each cluster is maintained higher than m nodes (m is a parameter of the algorithm). The obtained clustering is locally optimal in the sense that, with only a local view of each clusters, it computes the largest possible number of clusters (i.e. the sizes of the clusters are as close to m as possible). This algorithm is designed as a decentralized control algorithm for large scale networks and is mobility-adaptive: after a series of topological changes, the algorithm converges to a clustering. This recomputation only affects nodes in clusters where topological changes happened, and in adjacent clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Awerbuch, B., Berger, B., Cowen, L., Peleg, D.: Fast distributed network decompositions and covers. J. Parallel Distrib. Comput. 39(2), 105–114 (1996)

    Article  MATH  Google Scholar 

  2. Aleliunas, R., Karp, R., Lipton, R., Lovasz, L., Rackoff, C.: Random walks, universal traversal sequences and the complexity of maze problems. In: 20th Annual Symposium on Foundations of Computer Science, pp. 218–223 (1979)

    Google Scholar 

  3. Aldous, D.J.: The random walk construction for spanning trees and uniform labelled trees. SIAM J. Discrete Math. 3(4), 450–465 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  4. Basagni, S.: Distributed clustering for ad hoc networks. In: ISPAN’99, International Symposium on Parallel Architectures, Algorithms and Networks, pp. 310–315. IEEE Comput. Soc., Los Alamitos (1999)

    Google Scholar 

  5. Belkouch, F., Bui, M., Chen, L., Datta, A.K.: Self-stabilizing deterministic network decomposition. J. Parallel Distrib. Comput. 62(4), 696–714 (2002)

    Article  MATH  Google Scholar 

  6. Bernard, T., Bui, A., Flauzac, O.: Topological adaptability for the distributed token circulation paradigm in faulty environment. In: ISPA’04, International Symposium on Parallel and Distributed Processing and Applications. LNCS, vol. 3358, pp. 146–155. Springer, Berlin (2004)

    Google Scholar 

  7. Bernard, T., Bui, A., Flauzac, O., Nolot, F.: A multiple random walks based self-stabilizing k-exclusion algorithm in ad-hoc networks. Int. J. Parallel Emergent Distributed Syst. 25(2), 135–152 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bernard, T., Bui, A., Flauzac, O., Rabat, C.: Decentralized Resources Management for Grid. In: Workshop on Reliability in Decentralized Distributed Systems 2006. LNCS, vol. 4278, pp. 1530–1539. Springer, Berlin (2006)

    Google Scholar 

  9. Bui, A., Datta, A., Petit, F., Villain, V.: Snap-stabilization and PIF in tree networks. Distrib. Comput. 20(1), 3–19 (2007)

    Google Scholar 

  10. Bernard, T.: Marches aléatoires et mot circulant, adaptativité et tolérance aux pannes dans les environnements distribués. Ph.D. thesis, Université de Reims Champagne Ardenne (2006)

  11. Dolev, S., Schiller, E., Welch, J.L.: Random walk for self-stabilizing group communication in ad hoc networks. IEEE Trans. Mob. Comput. 5(7), 893–905 (2006)

    Article  Google Scholar 

  12. Johnen, C., Nguyen, L.H.: Robust self-stabilizing weight-based clustering algorithm. Theor. Comput. Sci. 410(6–7), 410–424 (2009)

    MathSciNet  Google Scholar 

  13. Lovász, L.: Random walks on graphs: a Survey. In: Szonyi, T., Miklos, D., Sos, V.T. (eds.) Combinatorics: Paul Erdos is Eighty, vol. 2, pp. 353–398. Janos Bolyai Mathematical Society, Budapest (1993)

    Google Scholar 

  14. Segall, A.: Distributed network protocols. IEEE Trans. Inf. Theory 29(1), 23–35 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  15. Tel, G.: Introduction to Distributed Algorithms. Cambridge University Press, Cambridge (1994)

    Book  MATH  Google Scholar 

  16. Taniguchi, H., Inoue, M., Masuzawa, T., Fujiwara, H.: Clustering algorithms in ad hoc networks. Electron. Commun. Jpn. 88(1), 127–135 (2005)

    Google Scholar 

  17. Theoleyre, F., Valois, F.: A self-organization structure for hybrid networks. Ad Hoc Netw. 6(3), 393–407 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Bui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bernard, T., Bui, A., Pilard, L. et al. A distributed clustering algorithm for large-scale dynamic networks. Cluster Comput 15, 335–350 (2012). https://doi.org/10.1007/s10586-011-0153-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-011-0153-z

Keywords

Navigation