An oscillator-based smooth real-time estimate of gait phase for wearable robotics | Autonomous Robots Skip to main content
Log in

An oscillator-based smooth real-time estimate of gait phase for wearable robotics

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

This paper presents a novel methodology for estimating the gait phase of human walking through a simple sensory apparatus. Three subsystems are combined: a primary phase estimator based on adaptive oscillators, a desired gait event detector and a phase error compensator. The estimated gait phase is expected to linearly increase from 0 to 2\(\pi \) rad in one stride and remain continuous also when transiting to the next stride. We designed two experimental scenarios to validate this gait phase estimator, namely treadmill walking at different speeds and free walking. In the case of treadmill walking, the maximum phase error at the desired gait events was found to be 0.155 rad, and the maximum phase difference between the end of the previous stride and beginning of the current stride was 0.020 rad. In the free walking trials, phase error at the desired gait event was never larger than 0.278 rad. Our algorithm outperformed against two other benchmarked methods. The good performance of our gait phase estimator could provide consistent and finely tuned assistance for an exoskeleton designed to augment the mobility of patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Ambrozic, L., Gorsic, M., Geeroms, J., Flynn, L., Molino Lova, R., Kamnik, R., et al. (2014). CYBERLEGs: A user-oriented robotic transfemoral prosthesis with whole-body awareness control. IEEE Robotics and Automation Magazine, 21(4), 82–93.

    Article  Google Scholar 

  • Bollens, B., Crevecoeur, F., Detrembleur, C., Warlop, T., & Lejeune, T. M. (2014). Variability of human gait: Effect of backward walking and dual-tasking on the presence of long-range autocorrelations. Annals of Biomedical Engineering, 42(4), 742–750.

    Article  Google Scholar 

  • Buchli, J., Righetti, L., & Ijspeert, A. J. (2008). Frequency analysis with coupled nonlinear oscillators. Physica D: Nonlinear Phenomena, 237, 1705–1718.

    Article  MathSciNet  MATH  Google Scholar 

  • Cappellini, G., & Ivanenko, Y. (2006). Motor patterns in human walking and running. Journal of Neurophysiology, 95(6), 3426–3437.

    Article  Google Scholar 

  • Crea, S., Donati, M., De Rossi, S. M. M., Oddo, C. M., & Vitiello, N. (2014). A wireless flexible sensorized insole for gait analysis. Sensors (Basel, Switzerland), 14(1), 1073–1093.

    Article  Google Scholar 

  • Donati, M., Vitiello, N., De Rossi, S. M. M., Lenzi, T., Crea, S., Persichetti, A., et al. (2013). A flexible sensor technology for the distributed measurement of interaction pressure. Sensors (Basel, Switzerland), 13(1), 1021–1045.

    Article  Google Scholar 

  • Giovacchini, F., Vannetti, F., Fantozzi, M., Cempini, M., Cortese, M., Parri, A., et al. (2014). A light-weight active orthosis for hip movement assistance. Robotics and Autonomous Systems, 73, 123–134.

    Article  Google Scholar 

  • Holgate, M. A., Sugar, T. G., & Alexander, W. B. (2009). A novel control algorithm for wearable robotics using phase plane invariants. In IEEE international conference on robotics and automation (pp. 3845–3850).

  • Iezzoni, L. I., McCarthy, E. P., Davis, R. B., & Siebens, H. (2001). Mobility difficulties are not only a problem of old age. Journal of General Internal Medicine, 16, 235–243.

    Article  Google Scholar 

  • Iwasaki, T. (2008). Multivariable harmonic balance for central pattern generators. Automatica, 44(12), 3061–3069.

    Article  MathSciNet  MATH  Google Scholar 

  • Kao, P. C., Lewis, C. L., & Ferris, D. P. (2010). Invariant ankle moment patterns when walking with and without a robotic ankle exoskeleton. Journal of Biomechanics, 43(2), 203–209.

    Article  Google Scholar 

  • Kawamoto, H., Taal, S., Niniss, H., Hayashi, T., Kamibayashi, K., Eguchi, K., & Sankai, Y. (2010). Voluntary motion support control of robot suit HAL triggered by bioelectrical signal for hemiplegia. In IEEE conference on engineering in medicine and biology society (pp. 462–466).

  • Kazerooni, H., Steger, R., & Huang, L. (2006). Hybrid control of the berkeley lower extremity exoskeleton (BLEEX). The International Journal of Robotics Research, 25(5–6), 561–573.

    Article  Google Scholar 

  • Lenzi, T., Carrozza, M. C., & Agrawal, S. K. (2013). Powered hip exoskeletons can reduce the user’s hip and ankle muscle activations during walking. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 21(6), 938–948.

    Article  Google Scholar 

  • Lewis, C. L., & Ferris, D. P. (2011). Invariant hip moment pattern while walking with a robotic hip exoskeleton. Journal of Biomechanics, 44(5), 789–793.

    Article  Google Scholar 

  • Pons, J. L. (2008). In J. L. Pons (Ed.), Wearable robots: Biomechatronic exoskeletons. New York: Wiley.

  • Pratt, G. A., & Williamson, M. M. (1995). Series elastic actuators. In IEEE/RSJ international conference on intelligent robots and systems. Human robot interaction and cooperative robots, proceedings (pp. 399–406).

  • Righetti, L., Buchli, J., & Ijspeert, A. J. (2006). Dynamic Hebbian learning in adaptive frequency oscillators. Physica D: Nonlinear Phenomena, 216(2), 269–281.

    Article  MathSciNet  MATH  Google Scholar 

  • Righetti, L., Buchli, J., & Ijspeert, A. J. (2009). Adaptive frequency oscillators and applications. The Open Cybernetics & Systemics Journal, 3(2), 64–69.

    Article  MathSciNet  MATH  Google Scholar 

  • Ronsse, R., De Rossi, S. M. M., Vitiello, N., Lenzi, T., Carrozza, M. C., & Ijspeert, A. J. (2013). Real-time estimate of velocity and acceleration of quasi-periodic signals using adaptive oscillators. IEEE Transactions on Robotics, 29(3), 783–791.

    Article  Google Scholar 

  • Ronsse, R., Lenzi, T., Vitiello, N., Koopman, B., Van Asseldonk, E., De Rossi, S. M. M., et al. (2011). Oscillator-based assistance of cyclical movements: Model-based and model-free approaches. Medical and Biological Engineering and Computing, 49, 1173–1185.

    Article  Google Scholar 

  • Veneman, J. F., Ekkelenkamp, R., Kruidhof, R., van der Helm, F. C., & van der Kooij, H. (2006). A series elastic- and Bowden-cable-based actuation system for use as torque actuator in exoskeleton-type robots. The International Journal of Robotics Research, 25(3), 261–281.

    Article  Google Scholar 

  • Verghese, J., LeValley, A., Hall, C. B., Katz, M. J., Ambrose, A. F., & Lipton, R. B. (2006). Epidemiology of gait disorders in community-residing older adults. Journal of the American Geriatrics Society, 54(2), 255–261.

    Article  Google Scholar 

  • Winter, Da. (2009). Biomechanics and motor control of human movement. New York: Wiley.

    Book  Google Scholar 

  • Yan, T., Cempini, M., Oddo, C. M., & Vitiello, N. (2015). Review of assistive strategies in powered lower-limb orthoses and exoskeletons. Robotics and Autonomous Systems, 64, 120–136.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the EU within the CYBERLEGs Project (FP7-ICT-2011-2.1 Grant Agreement #287894), by Fondazione Pisa within the IUVO Project (prog. 154/11).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tingfang Yan.

Additional information

This is one of several papers published in Autonomous Robots comprising the “Special Issue on Assistive and Rehabilitation Robotics”.

Marco Cempini was with The BioRobotics Institute, Scuola Superiore Sant’Anna, 56025 Pisa, Italy when coauthoring this work.

Tingfang Yan and Andrea Parri contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, T., Parri, A., Ruiz Garate, V. et al. An oscillator-based smooth real-time estimate of gait phase for wearable robotics. Auton Robot 41, 759–774 (2017). https://doi.org/10.1007/s10514-016-9566-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-016-9566-0

Keywords

Navigation