Blocked-Braid Groups | Applied Categorical Structures Skip to main content
Log in

Blocked-Braid Groups

  • Published:
Applied Categorical Structures Aims and scope Submit manuscript

Abstract

We introduce and study a family of groups BB n , called the blocked-braid groups, which are quotients of Artin’s braid groups B n , and have the corresponding symmetric groups Σ n as quotients. They are defined by adding a certain class of geometrical modifications to braids. They arise in the study of commutative Frobenius algebras and tangle algebras in braided strict monoidal categories. A fundamental equation true in BB n is Dirac’s Belt Trick - that torsion through 4π is equal to the identity. We show that BB n is finite for n = 1, 2 and 3 but infinite for n > 3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Artin, E.: Theory of braids. Ann. Math. 48, 101–126 (1947)

    Article  MATH  MathSciNet  Google Scholar 

  2. Carboni, A., Walters, R.F.C.: Cartesian Bicategories, I. J. Pure Appl. Algebra 49, 11–32 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  3. de Francesco Albasini, L., Sabadini, N., Walters, R.F.C.: Cospans and Spans of Graphs: A Categorical Algebra for the Sequential and Parallel Composition of Discrete Systems. arXiv:0909.4136

  4. Freyd, P., Yetter, D.: Braided compact monoidal categories with applications to low dimensional topology. Adv. Math. 77, 156–182 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  5. Joyal, A., Street, R.H.: Braided monoidal categories. Adv. Math. 102(1), 20–78 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  6. Katis, P., Sabadini, N., Walters, R.F.C.: Span(Graph): a categorical algebra of transition systems. In: Proceedings of AMAST’97, SLNCS, vol. 1349, pp. 307–321. Springer-Verlag (1997)

  7. Katis, P., Sabadini, N., Walters, R.F.C.: On the algebra of systems with feedback and boundary. Rendiconti del Circolo Matematico di Palermo Serie II, Suppl. 63, 123–156 (2000)

    MathSciNet  Google Scholar 

  8. Katis, P., Sabadini, N., Walters, R.F.C.: A formalisation of the IWIM Model. In: Proceedings of Coordination 2000, LNCS 1906, pp. 267–283. Springer Verlag (2000)

  9. Katis, P., Sabadini, N., Walters, R.F.C.: Feedback, trace and fixed-point semantics. Theoret. Inform. Appl. 36, 181–194 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. Maglia, D.: Tangled Circuits and Blocked Braids. Honours thesis, University of Insubria, Como (2012)

  11. Rosebrugh, R., Sabadini, N., Walters, R.F.C.: Minimization and minimal realization in Span(Graph). MSCS 14, 685–714 (2004)

    MATH  MathSciNet  Google Scholar 

  12. Rosebrugh, R., Sabadini, N., Walters, R.F.C.: Generic commutative separable algebras and cospans of graphs. Theory Appl. Categ. 15(6), 164–177 (2005)

    MATH  MathSciNet  Google Scholar 

  13. Rosebrugh, R., Sabadini, N., Walters, R.F.C.: Calculating colimits compositionally. Concurrency, Graphs and Models, vol. 5065, pp. 581–592. Essays dedicated to Ugo Montanari on the occasion of his 65th birthday. LNCS (2008)

  14. Rosebrugh, R., Sabadini, N., Walters, R.F.C.: Tangled circuits. Theory Appl. Categ. 26(27), 743–767 (2012)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. F. C. Walters.

Additional information

Dedicated to George Janelidze on the occasion of his sixtieth birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maglia, D., Sabadini, N. & Walters, R.F.C. Blocked-Braid Groups. Appl Categor Struct 23, 53–61 (2015). https://doi.org/10.1007/s10485-013-9363-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10485-013-9363-2

Keywords

Navigation