Abstract
In the setting of enriched category theory, we describe dual adjunctions of the form \(L\dashv R:{\mathsf{Spa}}^{op} \longrightarrow{\mathsf{Alg}}\) between the dual of the category Spa of “spaces” and the category Alg of “algebras” that arise from a schizophrenic object Ω, which is both an “algebra” and a “space”. We call such adjunctions logical connections. We prove that the exact nature of Ω is that of a module that allows to lift optimally the structure of a “space” and an “algebra” to certain diagrams. Our approach allows to give a unified framework known from logical connections over the category of sets and analyzed, e.g., by Hans Porst and Walter Tholen, with future applications of logical connections in coalgebraic logic and elsewhere, where typically, both the category of “spaces” and the category of “algebras” consist of “structured presheaves”.
Similar content being viewed by others
References
Adámek, J., Borceux, F., Lack, S., Rosický, J.: A classification of accessible categories, J. Pure Appl. Algebra 175, 7–30 (2002)
Adámek, J., Herrlich, H., Strecker, G.E.: Abstract and Concrete Categories. Wiley, New York (1990). Available electronically as a TAC Reprint at http://www.tac.mta.ca/tac/reprints/articles/17/tr17abs.html
Anghel, C.: Semi-initial and semi-final -functors. Commun. Algebra 18(1), 135–181 (1990)
Anghel, C.: Lifting properties of -functors. Commun. Algebra 18(1), 183–192 (1990)
Adámek, J., Rosický, J.: Locally Presentable and Accessible Categories. Cambridge University Press, Cambridge (1994)
Anderson, F.W., Fuller, K.R.: Rings and Categories of Modules, 2nd edn. Graduate Texts in Mathematics, Springer, New York (1992)
Erné, M., Koslowski, J., Melton, A., Strecker, G.E.: A primer on Galois connections. Ann. New York Acad. Sci. 704, 103–125 (1993)
Gabriel, P., Ulmer, F.: Lokal präsentierbare Kategorien. In: Lecture Notes in Mathematics 221. Springer, New York (1971)
Isbell, J.: Adequate subcategories. Ill. J. Math. 4(4), 541–552 (1960)
Johnstone, P.T.: Stone Spaces. Cambridge University Press, Cambridge (1986)
Kapulkin, K., Kurz, A., Velebil, J.: Expressivity of coalgebraic logic over posets. Short contributions CALCO 2010
Kasch, F.: Moduln und Ringe. B.G. Teubner, Stuttgart (1977)
Kelly, G.M.: Basic concepts of enriched category theory. In: London Math. Soc. Lecture Notes Series 64. Cambridge University Press, Cambridge (1982). Also available as TAC reprint via http://www.tac.mta.ca/tac/reprints/articles/10/tr10abs.html
Kelly, G.M., Schmitt, V.: Notes on enriched categories with colimits of some class. Theory Appl. Categ. 14(17), 399–423 (2005)
Kurz, A., Rosický, J.: Strongly complete logics for coalgebras. Manuscript, available at http://www.cs.le.ac.uk/people/akurz/works.html
Lawvere, F.W.: Metric spaces, generalized logic, and closed categories. Rend. Semin. Mat. Fis. Milano XLIII, 135–166 (1973). Also available as TAC reprint via http://www.tac.mta.ca/tac/reprints/articles/1/tr1abs.html
Pavlović, D., Mislove, M., Worrell, J.: Testing semantics: connecting processes and process logics. In: Proceedings of AMAST 2006, Lecture Notes in Computer Science, vol. 4019. Springer, New York (2006)
Porst, H.-E., Tholen, W.: Concrete dualities. In: Herrlich, H., Porst, H.-E. (eds.) Category Theory at Work, pp. 111–136. Heldermann, Berlin (1991)
Priestley, H.A.: Representation of distributive lattices by means of ordered Stone spaces. Bull. Lond. Math. Soc. 2, 186–190 (1970)
Author information
Authors and Affiliations
Corresponding author
Additional information
Jiří Velebil acknowledges the support of the grant No. P202/11/1632 of the Czech Science Foundation.
Rights and permissions
About this article
Cite this article
Kurz, A., Velebil, J. Enriched Logical Connections. Appl Categor Struct 21, 349–377 (2013). https://doi.org/10.1007/s10485-011-9267-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10485-011-9267-y