Enriched Logical Connections | Applied Categorical Structures
Skip to main content

Enriched Logical Connections

  • Published:
Applied Categorical Structures Aims and scope Submit manuscript

Abstract

In the setting of enriched category theory, we describe dual adjunctions of the form \(L\dashv R:{\mathsf{Spa}}^{op} \longrightarrow{\mathsf{Alg}}\) between the dual of the category Spa of “spaces” and the category Alg of “algebras” that arise from a schizophrenic object Ω, which is both an “algebra” and a “space”. We call such adjunctions logical connections. We prove that the exact nature of Ω is that of a module that allows to lift optimally the structure of a “space” and an “algebra” to certain diagrams. Our approach allows to give a unified framework known from logical connections over the category of sets and analyzed, e.g., by Hans Porst and Walter Tholen, with future applications of logical connections in coalgebraic logic and elsewhere, where typically, both the category of “spaces” and the category of “algebras” consist of “structured presheaves”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adámek, J., Borceux, F., Lack, S., Rosický, J.: A classification of accessible categories, J. Pure Appl. Algebra 175, 7–30 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Adámek, J., Herrlich, H., Strecker, G.E.: Abstract and Concrete Categories. Wiley, New York (1990). Available electronically as a TAC Reprint at http://www.tac.mta.ca/tac/reprints/articles/17/tr17abs.html

  3. Anghel, C.: Semi-initial and semi-final -functors. Commun. Algebra 18(1), 135–181 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  4. Anghel, C.: Lifting properties of -functors. Commun. Algebra 18(1), 183–192 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  5. Adámek, J., Rosický, J.: Locally Presentable and Accessible Categories. Cambridge University Press, Cambridge (1994)

    Book  MATH  Google Scholar 

  6. Anderson, F.W., Fuller, K.R.: Rings and Categories of Modules, 2nd edn. Graduate Texts in Mathematics, Springer, New York (1992)

  7. Erné, M., Koslowski, J., Melton, A., Strecker, G.E.: A primer on Galois connections. Ann. New York Acad. Sci. 704, 103–125 (1993)

    Article  Google Scholar 

  8. Gabriel, P., Ulmer, F.: Lokal präsentierbare Kategorien. In: Lecture Notes in Mathematics 221. Springer, New York (1971)

    Google Scholar 

  9. Isbell, J.: Adequate subcategories. Ill. J. Math. 4(4), 541–552 (1960)

    MathSciNet  MATH  Google Scholar 

  10. Johnstone, P.T.: Stone Spaces. Cambridge University Press, Cambridge (1986)

    MATH  Google Scholar 

  11. Kapulkin, K., Kurz, A., Velebil, J.: Expressivity of coalgebraic logic over posets. Short contributions CALCO 2010

  12. Kasch, F.: Moduln und Ringe. B.G. Teubner, Stuttgart (1977)

    Book  MATH  Google Scholar 

  13. Kelly, G.M.: Basic concepts of enriched category theory. In: London Math. Soc. Lecture Notes Series 64. Cambridge University Press, Cambridge (1982). Also available as TAC reprint via http://www.tac.mta.ca/tac/reprints/articles/10/tr10abs.html

  14. Kelly, G.M., Schmitt, V.: Notes on enriched categories with colimits of some class. Theory Appl. Categ. 14(17), 399–423 (2005)

    MathSciNet  MATH  Google Scholar 

  15. Kurz, A., Rosický, J.: Strongly complete logics for coalgebras. Manuscript, available at http://www.cs.le.ac.uk/people/akurz/works.html

  16. Lawvere, F.W.: Metric spaces, generalized logic, and closed categories. Rend. Semin. Mat. Fis. Milano XLIII, 135–166 (1973). Also available as TAC reprint via http://www.tac.mta.ca/tac/reprints/articles/1/tr1abs.html

    Article  MathSciNet  Google Scholar 

  17. Pavlović, D., Mislove, M., Worrell, J.: Testing semantics: connecting processes and process logics. In: Proceedings of AMAST 2006, Lecture Notes in Computer Science, vol. 4019. Springer, New York (2006)

    Google Scholar 

  18. Porst, H.-E., Tholen, W.: Concrete dualities. In: Herrlich, H., Porst, H.-E. (eds.) Category Theory at Work, pp. 111–136. Heldermann, Berlin (1991)

    Google Scholar 

  19. Priestley, H.A.: Representation of distributive lattices by means of ordered Stone spaces. Bull. Lond. Math. Soc. 2, 186–190 (1970)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiří Velebil.

Additional information

Jiří Velebil acknowledges the support of the grant No. P202/11/1632 of the Czech Science Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurz, A., Velebil, J. Enriched Logical Connections. Appl Categor Struct 21, 349–377 (2013). https://doi.org/10.1007/s10485-011-9267-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10485-011-9267-y

Keywords

Mathematics Subject Classifications (2010)