Abstract
Solving the problem stated in Sichler and Trnková, Topol. Its Appl., 142: 159–179, 2004, we construct metrics μ, ν on a set P such that the spaces X=(P,μ) and Y=(P,ν) have the same monoid of all continuous selfmaps, the space Y is coconnected (in the sense that every continuous map Y×Y→Y depends on at most one coordinate) while X is not. Also, properties of the forgetful functors Metr → Unif → Top are investigated for the “simultaneous variant” of the above problem.
Similar content being viewed by others
References
Adámek, J., Herrlich, H., Strecker, G.: Abstract and Concrete Categories. Wiley, New York (1990) (see online version http://katmat.math.uni-bremen.de/acc)
Cook, H.: Continua which admit only the identity mapping onto non-degenerate sub-continua. Fund. Math. 60, 241–249 (1967)
Engelking, R.: General Topology, Państwowe Wydawnictvo Naukowe, Warszawa 1977, 2nd edn. (1985)
Herrlich, H.: On the concept of reflections in general topology. In: Proceeding Symp. on Extension Theory of Topological Structures, Berlin (1967)
Herrlich, H.: Topologische Reflexionen und Coreflexionen. In: Lect. Notes in Math., vol. 78. Springer, Berlin Heidelberg New York (1968)
Kuratowski, C.: Topologie I, II, Monografie Matematyczne, Warsaw (1950)
Lawvere, F.W.: Functorial semantics of algebraic theories. Proc. Nat. Acad. Sci. U.S.A. 50, 869–872 (1963)
Lawvere, F.W.: Some algebraic problems in context of functorial semantics of algebraic theories. In: Lect. Notes in Math., vol. 61, pp. 41–46. Springer, Berlin Heidelberg New York (1968)
McKenzie, R.N., McNulty, G.F., Taylor, W.F.: Algebras, Lattices, Varieties, vol. 1. Brooks/Cole, Monterey, CA (1978)
Pultr, A., Trnková, V.: Combinatorial, Algebraic and Topological Representations of Groups, Semigroups and Categories. North Holland, Amsterdam (1980)
Sichler, J., Trnková, V.: Maps between a space and its square. Topology Appl. 142, 159–179 (2004)
Szendrei, Á.: Clones in Universal Algebra. Press de l’Université de Montréal (1986)
Taylor, W.: The Clone of a Topological Space, Research and Exposition Math., vol. 13, Helderman-Verlag, Berlin (1986)
Taylor, W.: Abstract clone theory. In: Rosenberg, I.G., Sabidussi, G. (eds.) Algebras and Order, Proceedings of the NATO Advanced Study Institute, Montréal 1991, pp. 507–530. Kluwer, Boston, MA (1993)
Trnková, V.: Semirigid spaces. Trans. Amer. Math. Soc. 343, 305–329 (1994)
Trnková, V.: Co-connected spaces. Serdica Math. J. 24, 25–36 (1998)
Trnková, V.: Clones, coclones and coconnected spaces. Acta Math. Univ. Comenian. (N.S.) 69, 241–259 (2000)
Trnková, V.: Counting cocomponents of a topological space. Appl. Categ. Structures 12, 379–396 (2004)
Author information
Authors and Affiliations
Corresponding author
Additional information
Supported by the Grant Agency of Czech Republic under grant 201/06/0664 and by the project of Ministry of Education of Czech Republic MSM 0021620839.
Rights and permissions
About this article
Cite this article
Trnková, V. Metrizability and Coconnectedness. Appl Categor Struct 15, 621–631 (2007). https://doi.org/10.1007/s10485-006-9036-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10485-006-9036-5
Key words
- finite products
- monoids of selfmaps
- clone
- first order language
- coconnectedness
- nonexpanding maps
- uniformly continuous maps
- continuous maps