Metrizability and Coconnectedness | Applied Categorical Structures
Skip to main content

Metrizability and Coconnectedness

  • Published:
Applied Categorical Structures Aims and scope Submit manuscript

Abstract

Solving the problem stated in Sichler and Trnková, Topol. Its Appl., 142: 159–179, 2004, we construct metrics μ, ν on a set P such that the spaces X=(P,μ) and Y=(P,ν) have the same monoid of all continuous selfmaps, the space Y is coconnected (in the sense that every continuous map Y×YY depends on at most one coordinate) while X is not. Also, properties of the forgetful functors Metr → Unif → Top are investigated for the “simultaneous variant” of the above problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adámek, J., Herrlich, H., Strecker, G.: Abstract and Concrete Categories. Wiley, New York (1990) (see online version http://katmat.math.uni-bremen.de/acc)

  2. Cook, H.: Continua which admit only the identity mapping onto non-degenerate sub-continua. Fund. Math. 60, 241–249 (1967)

    MATH  MathSciNet  Google Scholar 

  3. Engelking, R.: General Topology, Państwowe Wydawnictvo Naukowe, Warszawa 1977, 2nd edn. (1985)

  4. Herrlich, H.: On the concept of reflections in general topology. In: Proceeding Symp. on Extension Theory of Topological Structures, Berlin (1967)

  5. Herrlich, H.: Topologische Reflexionen und Coreflexionen. In: Lect. Notes in Math., vol. 78. Springer, Berlin Heidelberg New York (1968)

    Google Scholar 

  6. Kuratowski, C.: Topologie I, II, Monografie Matematyczne, Warsaw (1950)

  7. Lawvere, F.W.: Functorial semantics of algebraic theories. Proc. Nat. Acad. Sci. U.S.A. 50, 869–872 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  8. Lawvere, F.W.: Some algebraic problems in context of functorial semantics of algebraic theories. In: Lect. Notes in Math., vol. 61, pp. 41–46. Springer, Berlin Heidelberg New York (1968)

    Google Scholar 

  9. McKenzie, R.N., McNulty, G.F., Taylor, W.F.: Algebras, Lattices, Varieties, vol. 1. Brooks/Cole, Monterey, CA (1978)

    Google Scholar 

  10. Pultr, A., Trnková, V.: Combinatorial, Algebraic and Topological Representations of Groups, Semigroups and Categories. North Holland, Amsterdam (1980)

    MATH  Google Scholar 

  11. Sichler, J., Trnková, V.: Maps between a space and its square. Topology Appl. 142, 159–179 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Szendrei, Á.: Clones in Universal Algebra. Press de l’Université de Montréal (1986)

  13. Taylor, W.: The Clone of a Topological Space, Research and Exposition Math., vol. 13, Helderman-Verlag, Berlin (1986)

    Google Scholar 

  14. Taylor, W.: Abstract clone theory. In: Rosenberg, I.G., Sabidussi, G. (eds.) Algebras and Order, Proceedings of the NATO Advanced Study Institute, Montréal 1991, pp. 507–530. Kluwer, Boston, MA (1993)

    Google Scholar 

  15. Trnková, V.: Semirigid spaces. Trans. Amer. Math. Soc. 343, 305–329 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  16. Trnková, V.: Co-connected spaces. Serdica Math. J. 24, 25–36 (1998)

    MATH  MathSciNet  Google Scholar 

  17. Trnková, V.: Clones, coclones and coconnected spaces. Acta Math. Univ. Comenian. (N.S.) 69, 241–259 (2000)

    MATH  MathSciNet  Google Scholar 

  18. Trnková, V.: Counting cocomponents of a topological space. Appl. Categ. Structures 12, 379–396 (2004)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Věra Trnková.

Additional information

Supported by the Grant Agency of Czech Republic under grant 201/06/0664 and by the project of Ministry of Education of Czech Republic MSM 0021620839.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trnková, V. Metrizability and Coconnectedness. Appl Categor Struct 15, 621–631 (2007). https://doi.org/10.1007/s10485-006-9036-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10485-006-9036-5

Key words

Mathematics Subject Classifications (2000)