Abstract
It is shown that the space X [0,1], of continuous maps [0,1]→X with the compact-open topology, is not locally compact for any space X having a nonconstant path of closed points. For a T 1-space X, it follows that X [0,1] is locally compact if and only if X is locally compact and totally path-disconnected.
Similar content being viewed by others
References
Day, B. J. and Kelly, G. M.: On topological quotients preserved by pullback or products, Proc. Cambridge Philos. Soc. 67 (1970), 553–558.
Fox, R. H.: On topologies for function spaces, Bull. Amer. Math. Soc. 51 (1945), 429–432.
Gierz, G., Hofmann, K. H., Keimel, K., Lawson, J. D., Mislove, M. W. and Scott, D. S.: Continuous Lattices and Domains, Encyclopedia Math. Appl. 93, Cambridge University Press, 2003.
Hofmann, K. H. and Lawson, J. D.: The spectral theory of distributive continuous lattices, Trans. Amer. Math. Soc. 246 (1978), 285–310.
Hofmann, K. H. and Mislove, M. W.: All compact Hausdorff lambda models are degenerate, Fund. Inform. 122 (1995), 23–52.
Isbell, J. R.: General function spaces, products, and continuous lattices, Proc. Cambridge Philos. Soc. 100 (1986), 193–205.
Kelley, J. L.: General Topology, Graduate Texts in Math. 27, Springer-Verlag, 1955.
Michael, E.: Bi-quotient maps and cartesian products of quotient maps, Ann. Inst. Fourier (Grenoble) 18 (1968), 287–302.
Niefield, S. B.: Cartesianness: Topological spaces, uniform spaces, and affine schemes, J. Pure Appl. Algebra 23 (1982), 147–167.
Niefield, S. B.: Exponentiability of perfect maps: Four approaches, Theory Appl. Categ. 10 (2002), 127–133.
Niefield, S. B.: Homotopy pullbacks, lax limits, and exponentiability, in preparation.
Scott, D. S.: Continuous lattices, in Lecture Notes in Math. 274, Springer, 1972, pp. 97–137.
Spanier, E. H.: Algebraic Topology, McGraw-Hill, 1966.
Author information
Authors and Affiliations
Corresponding author
Additional information
Mathematics Subject Classifications (2000)
54C35, 54E45, 55P35, 18B30, 18D15.
Rights and permissions
About this article
Cite this article
Niefield, S.B. Locally Compact Path Spaces. Appl Categor Struct 13, 65–69 (2005). https://doi.org/10.1007/s10485-004-5012-0
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/s10485-004-5012-0