Locally Compact Path Spaces | Applied Categorical Structures Skip to main content
Log in

Locally Compact Path Spaces

  • Published:
Applied Categorical Structures Aims and scope Submit manuscript

Abstract

It is shown that the space X [0,1], of continuous maps [0,1]→X with the compact-open topology, is not locally compact for any space X having a nonconstant path of closed points. For a T 1-space X, it follows that X [0,1] is locally compact if and only if X is locally compact and totally path-disconnected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Day, B. J. and Kelly, G. M.: On topological quotients preserved by pullback or products, Proc. Cambridge Philos. Soc. 67 (1970), 553–558.

    MATH  MathSciNet  Google Scholar 

  2. Fox, R. H.: On topologies for function spaces, Bull. Amer. Math. Soc. 51 (1945), 429–432.

    Article  MATH  MathSciNet  Google Scholar 

  3. Gierz, G., Hofmann, K. H., Keimel, K., Lawson, J. D., Mislove, M. W. and Scott, D. S.: Continuous Lattices and Domains, Encyclopedia Math. Appl. 93, Cambridge University Press, 2003.

  4. Hofmann, K. H. and Lawson, J. D.: The spectral theory of distributive continuous lattices, Trans. Amer. Math. Soc. 246 (1978), 285–310.

    MATH  MathSciNet  Google Scholar 

  5. Hofmann, K. H. and Mislove, M. W.: All compact Hausdorff lambda models are degenerate, Fund. Inform. 122 (1995), 23–52.

    MathSciNet  Google Scholar 

  6. Isbell, J. R.: General function spaces, products, and continuous lattices, Proc. Cambridge Philos. Soc. 100 (1986), 193–205.

    Article  MATH  MathSciNet  Google Scholar 

  7. Kelley, J. L.: General Topology, Graduate Texts in Math. 27, Springer-Verlag, 1955.

  8. Michael, E.: Bi-quotient maps and cartesian products of quotient maps, Ann. Inst. Fourier (Grenoble) 18 (1968), 287–302.

    MATH  MathSciNet  Google Scholar 

  9. Niefield, S. B.: Cartesianness: Topological spaces, uniform spaces, and affine schemes, J. Pure Appl. Algebra 23 (1982), 147–167.

    MATH  MathSciNet  Google Scholar 

  10. Niefield, S. B.: Exponentiability of perfect maps: Four approaches, Theory Appl. Categ. 10 (2002), 127–133.

    MATH  MathSciNet  Google Scholar 

  11. Niefield, S. B.: Homotopy pullbacks, lax limits, and exponentiability, in preparation.

  12. Scott, D. S.: Continuous lattices, in Lecture Notes in Math. 274, Springer, 1972, pp. 97–137.

  13. Spanier, E. H.: Algebraic Topology, McGraw-Hill, 1966.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. B. Niefield.

Additional information

Mathematics Subject Classifications (2000)

54C35, 54E45, 55P35, 18B30, 18D15.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niefield, S.B. Locally Compact Path Spaces. Appl Categor Struct 13, 65–69 (2005). https://doi.org/10.1007/s10485-004-5012-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10485-004-5012-0

Keywords

Navigation