Fairness based unique common equilibrium efficient frontier for evaluating decision-making units with fixed-sum outputs | Annals of Operations Research Skip to main content

Advertisement

Log in

Fairness based unique common equilibrium efficient frontier for evaluating decision-making units with fixed-sum outputs

  • Original Research
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Data envelopment analysis, a non-parametric programming approach, has been extended to situations in which all total decision-making unit (DMU) outputs are fixed, and a secondary goal approach based on a minimum reduction strategy proposed to achieve an equilibrium efficient frontier to evaluate these fixed-sum output DMUs. However, the non-uniqueness of the equilibrium efficient frontier and the calculation burden of the iterative procedure have reduced the practicability of these approaches. Therefore, to address these problems, this paper developed a fairness based common equilibrium efficient frontier data envelopment analysis approach (CEEFDEA) that can guarantee the uniqueness of the common equilibrium efficient frontier and achieve such a frontier in only one step. Fairness is also included into the proposed CEEFDEA approach and the price of fairness is defined. One numerical example from previous studies and one case study focused on an efficiency evaluation of the Chinese appliance industry in 2019 are given to illustrate the effectiveness of the proposed approach. The results from the numerical example showed that the proposed CEEFDEA approach was able to achieve a fairer common equilibrium efficient frontier at the expense of a 5.85% increase in the adjustment proportion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Andersen, P., & Petersen, N. C. (1993). A procedure for ranking efficient units in data envelopment analysis. Management Science, 39(10), 1261–1264.

    Article  Google Scholar 

  • Antunes, J., Hadi-Vencheh, A., Jamshidi, A., Tan, Y., & Wanke, P. (2021). Bank efficiency estimation in china: DEA-RENNA approach. Annals of Operations Research, 315, 1373.

    Article  Google Scholar 

  • Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some models for estimating technical and scale inefficiencies in data envelopment analysis. Management Science, 30(9), 1078–1092.

    Article  Google Scholar 

  • Bertsimas, D., Farias, V. F., & Trichakis, N. (2011). The price of fairness. Operations Research, 59(1), 17–31.

    Article  Google Scholar 

  • Boubaker, S., Do, D. T., Hammami, H., & Ly, K. C. (2020). The role of bank affiliation in bank efficiency: a fuzzy multi-objective data envelopment analysis approach. Annals of Operations Research.

  • Charnes, A., & Cooper, W. W. (1962). Programming with linear fractional functions. Naval Research Logistics Quarterly, 9, 181–185.

    Article  Google Scholar 

  • Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2(6), 429–444.

    Article  Google Scholar 

  • Chen, C., Cook, W. D., Imanirad, R., & Zhu, J. (2020). Balancing fairness and efficiency: Performance evaluation with disadvantaged units in non-homogeneous environments. European Journal of Operational Research, 287, 1003–1013.

    Article  Google Scholar 

  • Cui, T. H., Raju, J. S., & Zhang, Z. J. (2007). Fairness and channel coordination. Management Science, 53(8), 1303–1314.

    Article  Google Scholar 

  • De Bruyn, A., & Bolton, G. E. (2008). Estimating the influence of fairness on bargaining behavior. Management Science, 54(10), 1774–1791.

    Article  Google Scholar 

  • Deb, K., Sindhya, K., & Hakanen, J. (2016). Multi-objective optimization. Decision Sciences, 145–184.

  • Denstad, A., Ulsund, E., Christiansen, M., Hvattum, L. M., & Tirado, G. (2021). Multi-objective optimization for a strategic ATM network redesign problem. Annals of Operations Research, 296(1), 7–33.

    Article  Google Scholar 

  • Fadaee, M., & Radzi, M. A. M. (2012). Multi-objective optimization of a stand-alone hybrid renewable energy system by using evolutionary algorithms: A review. Renewable & Sustainable Energy Reviews, 16(5), 3364–3369.

    Article  Google Scholar 

  • Fang, L. (2016). A new approach for achievement of the equilibrium efficient frontier with fixed-sum outputs. Journal of the Operational Research Society, 67(3), 412–420.

    Article  Google Scholar 

  • Feng, Q., Wu, Z., & Zhou, G. (2021). Fixed cost allocation considering the input-output scale based on DEA approach. Computers & Industrial Engineering, 159, 107476.

    Article  Google Scholar 

  • Gerami, J., Kiani Mavi, R., Farzipoor Saen, R., & Mavi, N. K. (2020). A novel network DEA-R model for evaluating hospital services supply chain performance. Annals of Operations Research.

  • Ghasemi, N., Najafi, E., Lotfi, F. H., & Sobhani, F. M. (2020). Assessing the performance of organizations with the hierarchical structure using data envelopment analysis: An efficiency analysis of farhangian university. Measurement, 156, 107609.

    Article  Google Scholar 

  • Gomes, E., & Lins, M. P. E. (2008). Modelling undesirable outputs with zero sum gains data envelopment analysis models. Journal of the Operational Research Society, 59(5), 616–623.

    Article  Google Scholar 

  • Guan, Z., Ye, T., & Yin, R. (2020). Channel coordination under nash bargaining fairness concerns in differential games of goodwill accumulation. European Journal of Operational Research, 285, 916–930.

    Article  Google Scholar 

  • Ho, T., Su, X., & Wu, Y. (2014). Distributional and peer-induced fairness in supply chain contract design. Production and Operations Management, 23(2), 161–175.

    Article  Google Scholar 

  • Jagtenberg, C., & Mason, A. (2020). Improving fairness in ambulance planning by time sharing. European Journal of Operational Research, 280(3), 1095–1107.

    Article  Google Scholar 

  • Kahneman, D., Knetsch, J. L., & Thaler, R. H. (1986). Fairness and the assumptions of economics. The Journal of Business, 59(4), 285–300.

    Article  Google Scholar 

  • Konak, A., Coit, D. W., & Smith, A. E. (2006). Multi-objective optimization using genetic algorithms: A tutorial. Reliability Engineering & System Safety, 91(9), 992–1007.

    Article  Google Scholar 

  • Lins, M. P. E., Gomes, E. G., de Mello, J. C. C. S., & de Mello, A. J. R. S. (2003). Olympic ranking based on a zero sum gains DEA model. European Journal of Operational Research, 148(2), 312–322.

    Article  Google Scholar 

  • Marler, R. T., & Arora, J. S. (2004). Survey of multi-objective optimization methods for engineering. Structural and Multidisciplinary Optimization, 26(6), 369–395.

    Article  Google Scholar 

  • Marler, R. T., & Arora, J. S. (2010). The weighted sum method for multi-objective optimization: New insights. Structural and Multidisciplinary Optimization, 41(6), 853–862.

    Article  Google Scholar 

  • Milioni, A. Z., De Avellar, J. V. G., Gomes, E. G., & De Mello, J. C. C. B. S. (2011). An ellipsoidal frontier model: Allocating input via parametric DEA. European Journal of Operational Research, 209(2), 113–121.

    Article  Google Scholar 

  • Milioni, A. Z., De Avellar, J. V. G., Rabello, T. N., & De Freitas, G. M. (2011). Hyperbolic frontier model: A parametric DEA approach for the distribution of a total fixed output. Journal of the Operational Research Society, 62(6), 1029–1037.

    Article  Google Scholar 

  • Rawls, J. (1971). A theory of justice. Harvard University Press.

    Book  Google Scholar 

  • Sen, A., & Foster, J. E. (1997). On economic inequality. Oxford University Press.

    Google Scholar 

  • Silva, R. C. D., Milioni, A. Z., & Teixeira, J. E. (2018). The general hyperbolic frontier model: establishing fair output levels via parametric DEA. Journal of the Operational Research Society, 69(6), 946–958.

    Article  Google Scholar 

  • Silveira, J. Q. D., De Mello, J. C. C. B. S., & Angulomeza, L. (2019). Input redistribution using a parametric DEA frontier and variable returns to scale: The parabolic efficient frontier. Journal of the Operational Research Society, 70(5), 751–759.

    Article  Google Scholar 

  • Wu, J., Xia, P., Zhu, Q. Y., & Chu, J. (2019). Measuring environmental efficiency of thermoelectric power plants: a common equilibrium efficient frontier DEA approach with fixed-sum undesirable output. Annals of Operations Research, 275(2), 731–749.

    Article  Google Scholar 

  • Yang, F., Wu, D. D., Liang, L., & O’Neill, L. (2011). Competition strategy and efficiency evaluation for decision making units with fixed-sum outputs. European Journal of Operational Research, 212(3), 560–569.

    Article  Google Scholar 

  • Yang, M., Li, Y., Chen, Y., & Liang, L. (2014). An equilibrium efficiency frontier data envelopment analysis approach for evaluating decision-making units with fixed-sum outputs. European Journal of Operational Research, 239(2), 479–489.

    Article  Google Scholar 

  • Yang, M., Li, Y. J., & Liang, L. (2015). A generalized equilibrium efficient frontier data envelopment analysis approach for evaluating dmus with fixed-sum outputs. European Journal of Operational Research, 246(1), 209–217.

    Article  Google Scholar 

  • Young, H. P. (1995). Equity. In theory and practice. Princeton University Press.

  • Zhou, X., Li, L., Wen, H., Tian, X., Wang, S., & Lev, B. (2021). Supplier’s goal setting considering sustainability: An uncertain dynamic data envelopment analysis based benchmarking model. Information Sciences, 545, 44–64.

    Article  Google Scholar 

  • Zhu, Q. Y., Song, M. L., & Wu, J. (2020). Extended secondary goal approach for common equilibrium efficient frontier selection in DEA with fixed-sum. Computers & Industrial Engineering, 144, 106483.

    Article  Google Scholar 

  • Zhu, Q. Y., Wu, J., Song, M. L., & Liang, L. (2017). A unique equilibrium efficient frontier with fixed-sum outputs in data envelopment analysis. Journal of the Operational Research Society, 68(12), 1483–1490.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant nos. 71971148 and 71671118) and also supported by the Fundamental Research Funds for the Central Universities (Grant No. SXYPY202103).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhibin Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Proof of Theorem 2

First of all, we prove that \(\frac{{{C^{'}}}}{C}(v_i^*,u_r^*,w_t^*,\mu _0^*,a_{tj}^*,b_{tj}^*)\;(\forall i,r,t,j)\) is a feasible solution to model (14). For convenience, we set \(\lambda = \frac{{{C^{'}}}}{C}\;(\lambda > 0)\). Then, according to an optimal solution \((v_i^*,u_r^*,w_t^*,\mu _0^*,a_{tj}^*,b_{tj}^*)\), we put \(\lambda (v_i^*,u_r^*,w_t^*,\mu _0^*,a_{tj}^*,b_{tj}^*)\;(\forall i,r,t,j)\) into all constraints of the model (14) with any positive constant \({{C^{'}}}\), and it follows that,

$$\begin{aligned} \begin{array}{l} \sum \limits _{r = 1}^s {\lambda u_r^*{y_{rj}}} + \sum \limits _{t = 1}^l {(\lambda w_t^*{f_{tj}} + \lambda a_{tj}^* - \lambda b_{tj}^*} ) - \sum \limits _{i = 1}^m {\lambda v_i^*{x_{ij}}} + \lambda \mu _0^*\\ = \lambda \left( \sum \limits _{r = 1}^s {u_r^*{y_{rj}}} + \sum \limits _{t = 1}^l {(w_t^*{f_{tj}} + a_{tj}^* - b_{tj}^*} ) - \sum \limits _{i = 1}^m {v_i^*{x_{ij}}} + \mu _0^* \right) = 0,\;\;\forall j\\ \sum \limits _{i = 1}^m {\lambda v_i^*{x_{ij}}} = \lambda \sum \limits _{i = 1}^m {v_i^*{x_{ij}}} \ge \lambda C\mathrm{{ = }}{C^{'}},\;\;\forall t\;\\ \sum \limits _{j = 1}^n {(\lambda a_{tj}^* - \lambda b_{tj}^*)} = \lambda \sum \limits _{j = 1}^n {(a_{tj}^* - b_{tj}^*)} \mathrm{{ = }}0\\ \lambda w_t^*{f_{tj}} + (\lambda a_{tj}^* - \lambda b_{tj}^*)\mathrm{{ = }}\lambda (w_t^*{f_{tj}} + (a_{tj}^* - b_{tj}^*)) \ge 0,\;\;\forall t,j\\ \lambda v_i^*,\lambda u_r^*,\lambda w_t^*,\lambda a_{tj}^*,\lambda b_{tj}^* \ge 0,\;\;\forall r,t,i,j\\ \lambda \mu _0^*\;is\;free. \end{array} \end{aligned}$$
(A.1)

Apparently, \(\lambda (v_i^*,u_r^*,w_t^*,\mu _0^*,a_{tj}^*,b_{tj}^*)\;(\forall i,r,t,j)\) satisfies all constraints in model (14) with a random positive constant \(C^{'}\), therefore, the feasibility of the solution is proven.

Next, we prove that \(\lambda (v_i^*,u_r^*,w_t^*,\mu _0^*,a_{tj}^*,b_{tj}^*)\;(\forall i,r,t,j)\) is an optimal solution to model (14) with \({C^{'}}({C^{'}} > 0)\). Suppose that the above feasible solution is not an optimal solution, at least one nonnegative feasible solution can be found for model (14) with \({C^{'}}({C^{'}} > 0)\) (\((\lambda {v_i},\lambda {u_r},\lambda {w_t},\lambda {\mu _0},\lambda {a_{tj}},\lambda {b_{tj}})\;(\forall i,r,t,j)\)) such that

$$\begin{aligned} \sum \limits _{j = 1}^n {\sum \limits _{t = 1}^l {\left( {{\left( \frac{{\lambda {a_{tj}}}}{{{f_{tj}}}}\right) }^2} + {{\left( \frac{{\lambda {b_{tj}}}}{{{f_{tj}}}}\right) }^2}\right) } } < \sum \limits _{j = 1}^n {\sum \limits _{t = 1}^l {\left( {{\left( \frac{{\lambda a_{tj}^*}}{{{f_{tj}}}}\right) }^2} + {{\left( \frac{{\lambda b_{tj}^*}}{{{f_{tj}}}}\right) }^2}\right) } }. \end{aligned}$$
(A.2)

Accordingly, it is easy to test that \(({v_i},{u_r},{w_t},{\mu _0},{a_{tj}},{b_{tj}})\;(\forall i,r,t,j)\) is also a feasible solution to model (14) with \({C^{'}}({C^{'}} > 0)\).

According to Eq. (A.2), we get

$$\begin{aligned} {\lambda ^2}\sum \limits _{j = 1}^n {\sum \limits _{t = 1}^l {\left( {{\left( \frac{{{a_{tj}}}}{{{f_{tj}}}}\right) }^2} + {{\left( \frac{{{b_{tj}}}}{{{f_{tj}}}}\right) }^2}\right) } } < {\lambda ^2}\sum \limits _{j = 1}^n {\sum \limits _{t = 1}^l {\left( {{\left( \frac{{a_{tj}^*}}{{{f_{tj}}}}\right) }^2} + {{\left( \frac{{b_{tj}^*}}{{{f_{tj}}}}\right) }^2}\right) } }. \end{aligned}$$
(A.3)

However, \((v_i^*,u_r^*,w_t^*,\mu _0^*,a_{tj}^*,b_{tj}^*)\;(\forall i,r,t,j)\) is an optimal solution to the model (14) with \({C^{'}}({C^{'}} > 0)\).

Then

$$\begin{aligned} \sum \limits _{j = 1}^n {\sum \limits _{t = 1}^l {\left( {{\left( \frac{{a_{tj}^*}}{{{f_{tj}}}}\right) }^2} + {{\left( \frac{{b_{tj}^*}}{{{f_{tj}}}}\right) }^2}\right) < } } \sum \limits _{j = 1}^n {\sum \limits _{t = 1}^l {\left( {{\left( \frac{{{a_{tj}}}}{{{f_{tj}}}}\right) }^2} + {{\left( \frac{{{b_{tj}}}}{{{f_{tj}}}}\right) }^2}\right) } }, \end{aligned}$$
(A.4)

which contradicts with our assumption. So far, the theorem is proven.

Appendix B: Proof of Theorem 3

Theorem 3 is proven through contradiction.

Suppose \(\theta = ({v_i},{u_r},{w_t},{\mu _0},{a_{tj}},{b_{tj}})\) is a solution to model (14). The corresponding objective value is \({\left\| \gamma \right\| ^2}\), where \(\gamma = ({\frac{{{a_{tj}}}}{{{f_{tj}}}}}, {\frac{{{b_{tj}}}}{{{f_{tj}}}}} \left| {t \in T,j \in J} \right. )\). Then, it is assumed that \(\theta _1^*\) and \(\theta _2^*\) are the two optimal solutions to model (14), and \({\left\| \gamma _1^* \right\| ^2}\) = \({\left\| \gamma _2^* \right\| ^2}\) = \(\varepsilon ^2\), where \(\varepsilon ^2\) is the optimal value to model (14).

When \(\theta = \frac{{\theta _1^* + \theta _2^*}}{2}\), it follows that \(\theta \) is the solution to model (14)); therefore, we get:

$$\begin{aligned} \varepsilon \le \left\| \gamma \right\| \le \frac{1}{2}\left\| {\gamma _1^*} \right\| + \frac{1}{2}\left\| {\gamma _2^*} \right\| = \varepsilon \end{aligned}$$

That is,

$$\begin{aligned}\left\| \gamma \right\| = \frac{1}{2}\left\| {\gamma _1^*} \right\| + \frac{1}{2}\left\| {\gamma _2^*} \right\| \end{aligned}$$

So,

$$\begin{aligned}\gamma _1^* = \lambda \gamma _2^*,\left| \lambda \right| = 1\end{aligned}$$

If \(\lambda = -1\), then \(\gamma \) =0 is not the solution to the model (14). Therefore, \(\lambda = 1\), \(\gamma _1^* = \gamma _2^* \), and the solution \((v_i^*,u_r^*,w_t^*,\mu _0^*,a_{tj}^*,b_{tj}^*) \) is the unique optimal solution to model (14).

Appendix C: Proof of Theorem 4

First, it is necessary to prove it holds for the two-dimensional case, that is, that the unique optimal solution to model (13) is a Pareto solution to model (11).

Denote the unique optimal solutions to model (13) as \((x_1,y_1)\). If \((x_1,y_1)\) is not a Pareto solution to model (11), then there must be some solution (\(x_2,y_2\)) that is better than the solution \((x_1,y_1)\). As solution (\(x_2,y_2\)) is the feasible solution to model (13), so \(x_2^2 + y_2^2 > x_1^2 + y_1^2\).

When \(y_1 > x_1\), if \(x_2 < x_1\), based on \(x_2^2 + y_2^2 > x_1^2 + y_1^2\), then \(y_2 > y_1\), so min-max \(\{x_2,y_2\}>\) min-max \(\{x_1,y_1\}\). Otherwise, if \(x_2 > x_1\), as the feasible region for model (11) is a nonnegative convex set, we have the slope \(\frac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}\) greater than \(- 1/\frac{{{y_1}}}{{{x_1}}}\), i.e., \(\frac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}} > - 1/\frac{{{y_1}}}{{{x_1}}}\). Because \(y_1 > x_1\), so \(\frac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}} > - 1\), then \({x_2} + {y_2} > {x_1} + {y_1}\). Therefore, regardless of \(x_2 < x_1\) or \(x_2 > x_1\), when \(y_1 > x_1\), solution \((x_2,y_2)\) is not better than solution \((x_1,y_1)\), that is, the solution \((x_1,y_1)\) is a Pareto solution to model (11).

When \(y_1 < x_1\), the same is true. A similar conclusion to the multidimensional case can be obtained from the two-dimensional case. Therefore, so far, the theorem is proven.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Q., Li, D., Zhou, G. et al. Fairness based unique common equilibrium efficient frontier for evaluating decision-making units with fixed-sum outputs. Ann Oper Res 341, 427–449 (2024). https://doi.org/10.1007/s10479-022-05013-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-022-05013-7

Keywords

Navigation