Abstract
In the current era of Industry 4.0, smart manufacturing systems seek to achieve a high level of flexibility and efficiency. This can be achieved by means of incorporating a high degree of automation and autonomous robotized systems along with efficient decision-making systems capable to reconfigure the system tasks in real-time according to the external demands and perturbations. For the fast development of the digital twins of manufacturing plants that include some robotic devices, it is advantageous to use discrete-event simulators, for production process modeling, and the existing virtual environments of the robots and automatic devices. This work proposes the design and construction of software architecture capable of integrating discrete-event process simulators with the well-known Robot Operating System (ROS) allowing easily interchange information between the factory components for fast digital twin development of robotized manufacturing systems. In addition, our proposal allows for a straightforward integration between the digital twin with an autonomous decision-making system. The proposed ROS-based architecture is tested using different discrete-event simulators and the free distribution ROS Melodic. Finally, we present an instance of software architecture for a typical complex case study of manufacturing plants and demonstrate its easy integration with an autonomous decision-making system.
Similar content being viewed by others
Notes
Unless otherwise explicitly stated, all images and figures are our own.
References
Agarap, A.F.: Deep learning using rectified linear units (relu). arXiv preprint arXiv:1803.08375 (2018)
Amiri, F., Shirazi, B., & Tajdin, A. (2019). Multi-objective simulation optimization for uncertain resource assignment and job sequence in automated flexible job shop. Applied Soft Computing Journal, 75, 190–202. https://doi.org/10.1016/j.asoc.2018.11.015.
Barrera-Diaz, C. A., Oscarsson, J., Lidberg, S., & Sellgren, T. (2018). Discrete event simulation output data-handling system in an automotive manufacturing plant. Procedia Manufacturing, 25, 23–30. https://doi.org/10.1016/j.promfg.2018.06.053.
Baskaran, S., Niaki, F. A., Tomaszewski, M., Gill, J. S., Chen, Y., Jia, Y., et al. (2019). Digital human and robot simulation in automotive assembly using siemens process simulate: A feasibility study. Procedia Manufacturing, 34, 986–994. https://doi.org/10.1016/j.promfg.2019.06.097.
Bass, L., Clements, P., R., K.: Software architecture in practice. Addison-Wesley Professional; 3rd Edición, (2013)
Ben Moussa, F. Z., De Guio, R., Dubois, S., Rasovska, I., & Benmoussa, R. (2019). Study of an innovative method based on complementarity between ARIZ, lean management and discrete event simulation for solving warehousing problems. Computers and Industrial Engineering, 132, 124–140. https://doi.org/10.1016/j.cie.2019.04.024.
Block, C., Lins, D., & Kuhlenkötter, B. (2018). Approach for a simulation-based and event-driven production planning and control in decentralized manufacturing execution systems. Procedia CIRP, 72, 1351–1356. https://doi.org/10.1016/j.procir.2018.03.204.
Cassandras, C. G., & Lafortune, S. (2008). Introduction to discrete event systems (pp. 1–771). Cham: Springer.
Cheng, J., Zhang, H., Tao, F., & Juang, C. F. (2020). DT-II: Digital twin enhanced Industrial Internet reference framework towards smart manufacturing. Robotics and Computer-Integrated Manufacturing. https://doi.org/10.1016/j.rcim.2019.101881.
Das, T., Gosavi, A., Mahadevan, S., & Marchalleck, N. (1998). Solving semi-markov decision problems using average reward reinforcement learning. Management Science. https://doi.org/10.1287/mnsc.45.4.560.
De Paula, M., & Martínez, E. C. (2012). Optimal operation of discretely controlled continuous systems under uncertainty. Industrial and Engineering Chemistry Research, 51(42), 13743–13764. https://doi.org/10.1021/ie301015z.
Dejene, D., Tiwari, B., & Tiwari, V.: (2020). TD2SecIoT: Temporal, data-driven and dynamic network layer based security architecture for industrial IoT. International Journal of Interactive Multimedia and Artificial Intelligence (pp. 1–11). https://doi.org/10.9781/ijimai.2020.10.002.
Demir, K. A., Döven, G., & Sezen, B. (2019). Industry 5.0 and human-robot co-working. Procedia Computer Science, 158, 688–695. https://doi.org/10.1016/j.procs.2019.09.104.
Ding, K., Lei, J., Chan, F. T. S., Hui, J., Zhang, F., & Wang, Y. (2020). Hidden Markov model-based autonomous manufacturing task orchestration in smart shop floors. Robotics and Computer-Integrated Manufacturing, 61, 1–9. https://doi.org/10.1016/j.rcim.2019.101845.
Dockter, D.: The Digital Twin and Real-Time Adaptive Robot Control. https://www.energid.com/blog/the-digital-twin-and-real-time-adaptive-robot-control (2021)
Fan, Y., Yang, J., Chen, J., Hu, P., Wang, X., Xu, J., & Zhou, B. (2021). A digital-twin visualized architecture for flexible manufacturing system. Journal of Manufacturing Systems, 60, 176–201. https://doi.org/10.1016/j.jmsy.2021.05.010.
Flaherty, N.: Digital twin combines robot control and VR. https://www.eenewseurope.com/en/digital-twin-combines-robot-control-and-vr/ (2021)
Furian, N., O’Sullivan, M., Walker, C., Vössner, S., & Neubacher, D. (2015). A conceptual modeling framework for discrete event simulation using hierarchical control structures. Simulation Modelling Practice and Theory, 56, 82–96. https://doi.org/10.1016/j.simpat.2015.04.004.
Gola, A. (2018). Reliability analysis of reconfigurable manufacturing system structures using computer simulation methods. Eksploatacja i Niezawodnosc - Maintenance and Reliability, 21, 90–102.
Gola, A., & Kłosowski, G. (2019). Development of computer-controlled material handling model by means of fuzzy logic and genetic algorithms. Neurocomputing, 338, 381–392. https://doi.org/10.1016/j.neucom.2018.05.125.
Gola, A., Pastuszak, Z., Relich, M., Sobaszek, L., & Szwarc, E. (2021). Scalability analysis of selected structures of a reconfigurable manufacturing system taking into account a reduction in machine tools reliability. Eksploatacja i Niezawodnosc - Maintenance and Reliability, 23, 242–252.
González García, C., Núñez-Valdez, E. R., García-Díaz, V., Pelayo G-Bustelo, C., & Cueva Lovelle, J. M. (2018). A review of artificial intelligence in the Internet of Things. International Journal of Interactive Multimedia and Artificial Intelligence, 5, 9–20.
Gonzalez, C. M. (2020). Robotics Blog: Digital Twins for Robot Installations. https://www.asme.org/topics-resources/content/robotics-blog-digital-twins-for-robot-installations
Govindaiah, S., Pey, M.D.: Applying reinforcement learning to plan manufacturing material handling Part 1: Background and formal problem specification. ACMSE 2019 - Proceedings of the 2019 ACM Southeast Conference, 168–171 (2019). https://doi.org/10.1145/3299815.3314451
Haag, S., & Anderl, R. (2018). Digital twin - Proof of concept. Manufacturing Letters, 15, 64–66. https://doi.org/10.1016/j.mfglet.2018.02.006.
He, R., Chen, G., Dong, C., Sun, S., & Shen, X. (2019). Data-driven digital twin technology for optimized control in process systems. ISA Transactions, 95, 221–234. https://doi.org/10.1016/j.isatra.2019.05.011.
Illmer, B., & Vielhaber, M. (2019). Synchronizing digital process twins between virtual products and resources - A virtual design method. Procedia CIRP, 84, 532–537. https://doi.org/10.1016/j.procir.2019.04.227.
Jeong, S.-J., & Jung, H. (2012). Optimal buffer allocation in flexible manufacturing systems using genetic algorithm and simulation. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 6, 1071–1080. https://doi.org/10.1299/jamdsm.6.1071.
Jun, S., Lee, S., & Yih, Y. (2020). Pickup and delivery problem with recharging for material handling systems utilising autonomous mobile robots. European Journal of Operational Research (In Press). https://doi.org/10.1016/j.ejor.2020.07.049
Khedri Liraviasl, K., ElMaraghy, H., Hanafy, M., & Samy, S. N. (2015). A framework for modelling reconfigurable manufacturing systems using hybridized discrete-event and agent-based simulation. IFAC-PapersOnLine, 48(3), 1490–1495.
Koubaa, A. (2016). Robot Operating System (ROS) the complete reference. Heidelberg: Springer.
Kunath, M., & Winkler, H. (2018). Integrating the Digital Twin of the manufacturing system into a decision support system for improving the order management process. Procedia CIRP, 72, 225–231. https://doi.org/10.1016/j.procir.2018.03.192.
Kusiak, A. (2018). Smart manufacturing. International Journal of Production Research, 56(1–2), 508–517. https://doi.org/10.1080/00207543.2017.1351644.
Laurindo, Q. M. G., Peixoto, T. A., & de Assis Rangel, J. J. (2019). Communication mechanism of the discrete event simulation and the mechanical project softwares for manufacturing systems. Journal of Computational Design and Engineering, 6(1), 70–80.
Leng, J., Liu, Q., Ye, S., Jing, J., Wang, Y., Zhang, C., et al. (2020). Digital twin-driven rapid reconfiguration of the automated manufacturing system via an open architecture model. Robotics and Computer-Integrated Manufacturing. https://doi.org/10.1016/j.rcim.2019.101895.
Li, X., Bayrak, E., Epureanu, B., & Koren, Y. (2018). Real-time teaming of multiple reconfigurable manufacturing systems. CIRP Annals. https://doi.org/10.1016/j.cirp.2018.04.051.
Lu, Y., Liu, C., Wang, K. I. K., Huang, H., & Xu, X. (2020). Digital Twin-driven smart manufacturing: Connotation, reference model, applications and research issues. Robotics and Computer-Integrated Manufacturing. https://doi.org/10.1016/j.rcim.2019.101837.
Melesse, T. Y., Pasquale, V. D., & Riemma, S. (2020). Digital twin models in industrial operations: A systematic literature review. Procedia Manufacturing, 42, 267–272. https://doi.org/10.1016/j.promfg.2020.02.084.
Meski, O., Belkadi, F., Laroche, F., & Furet, B. (2019). Towards a knowledge-based framework for digital chain monitoring within the industry 4.0 paradigm. Procedia CIRP, 84, 118–123. https://doi.org/10.1016/j.procir.2019.04.250.
Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., et al. (2015). Human-level control through deep reinforcement learning. Nature, 518(7540), 529–533.
Molenda, P., Drews, T., Oechsle, O., Butzer, S., & Steinhilper, R. (2017). A simulation-based framework for the economic evaluation of flexible manufacturing systems. Procedia CIRP, 63, 201–206.
Monahan, G. E. (1982). State of the art - A survey of partially observable Markov Decision Processes: Theory, models, and algorithms. Management Science, 28(1), 1–16.
Mourad, M. H., Nassehi, A., Schaefer, D., & Newman, S. T. (2020). Assessment of interoperability in cloud manufacturing. Robotics and Computer-Integrated Manufacturing. https://doi.org/10.1016/j.rcim.2019.101832.
Mourtzis, D., Doukas, M., & Bernidaki, D. (2014). Simulation in manufacturing: Review and challenges. Procedia CIRP, 25, 213–229. https://doi.org/10.1016/j.procir.2014.10.032.
Paternina-Arboleda, C. D., & Das, T. K. (2001). Intelligent dynamic control policies for serial production lines. IIE Transactions, 33, 65–77.
Paternina-Arboleda, C. D., & Das, T. K. (2005). A multi-agent reinforcement learning approach to obtaining dynamic control policies for stochastic lot scheduling problem. Simulation Modelling Practice and Theory, 13(5), 389–406. https://doi.org/10.1016/j.simpat.2004.12.003.
Qian, C., Zhang, Y., Jiang, C., Pan, S., & Rong, Y. (2020). A real-time data-driven collaborative mechanism in fixed-position assembly systems for smart manufacturing. Robotics and Computer-Integrated Manufacturing. https://doi.org/10.1016/j.rcim.2019.101841.
Qi, Q., Tao, F., Hu, T., Anwer, N., Liu, A., Wei, Y., et al. (2019). Enabling technologies and tools for digital twin. Journal of Manufacturing Systems. https://doi.org/10.1016/j.jmsy.2019.10.001.
Qudeiri, J. E. A. (2017). Production simulator system for flexible routing optimization in flexible manufacturing systems. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 231(7), 1237–1247. https://doi.org/10.1177/0954405415584959.
Rolle, R. P., Martucci, V. D. O., & Godoy, E. P. (2020). Architecture for Digital Twin implementation focusing on Industry 4.0. IEEE Latin America Transactions, 18(5), 889–898. https://doi.org/10.1109/TLA.2020.9082917.
Shaw, M., Garlan, D.: Software architecture: Perspectives on an emerging discipline. Upper Saddle River, N.J. (1996)
Sofiane, K., & Djamila, H. (2019). A temporal distributed group decision support system based on multi-criteria analysis. International Journal of Interactive Multimedia and Artificial Intelligence, 5(7), 7–21. https://doi.org/10.9781/ijimai.2019.03.002.
Sterman, J. D. (2000). Business dynamics: Systems thinking and modeling for a complex world (p. 982). McGraw-Hill Education: New york.
Sueldo, C. S., Villar, S. A., Paula, M. D., Urrutia, S. B., Acosta, G. G. (2020) Integración de ros y tecnomatix para el desarrollo de gemelos digitales en sistemas de manufactura flexible. In: Proceedings ICPR Americas 2020, pp. 1069–1083. Editorial de la Universidad Nacional del Sur, . https://www.matematica.uns.edu.ar/ipcra/pdf/icpr_americas_2020_proceedings.pdf
Sun, X., Bao, J., Li, J., Zhang, Y., Liu, S., & Zhou, B. (2020). A digital twin-driven approach for the assembly-commissioning of high precision products. Robotics and Computer-Integrated Manufacturing. https://doi.org/10.1016/j.rcim.2019.101839.
Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction. Cambridge: MIT Press.
Wang, J., Xu, C., Zhang, J., Bao, J., & Zhong, R. (2020). A collaborative architecture of the industrial internet platform for manufacturing systems. Robotics and Computer-Integrated Manufacturing. https://doi.org/10.1016/j.rcim.2019.101854.
Watkins, C. J. C. H., & Dayan, P. (1992). Q-learning. Machine Learning, 8, 279–292. https://doi.org/10.1007/BF00992698.
Xia, K., Sacco, C., Kirkpatrick, M., Saidy, C., Nguyen, L., Kircaliali, A., & Harik, R. (2021). A digital twin to train deep reinforcement learning agent for smart manufacturing plants: Environment, interfaces and intelligence. Journal of Manufacturing Systems, 58, 210–230. https://doi.org/10.1016/j.jmsy.2020.06.012.
Yang, L., & Shami, A. (2020). On hyperparameter optimization of machine learning algorithms: Theory and practice. Neurocomputing, 415, 295–316. https://doi.org/10.1016/j.neucom.2020.07.061.
Zhang, K., Qu, T., Zhou, D., Jiang, H., Lin, Y., Li, P., et al. (2020). Digital twin-based opti-state control method for a synchronized production operation system. Robotics and Computer-Integrated Manufacturing. https://doi.org/10.1016/j.rcim.2019.101892.
Zhong, R. Y., Xu, X., Klotz, E., & Newman, S. T. (2017). Intelligent manufacturing in the context of industry 4.0: A review. Engineering, 3(5), 616–630. https://doi.org/10.1016/J.ENG.2017.05.015.
Agarap, A.F.: Deep learning using rectified linear units (relu). arXiv preprint arXiv:1803.08375 (2018)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Saavedra Sueldo, C., Perez Colo, I., De Paula, M. et al. ROS-based architecture for fast digital twin development of smart manufacturing robotized systems. Ann Oper Res 322, 75–99 (2023). https://doi.org/10.1007/s10479-022-04759-4
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10479-022-04759-4