Examining sustainable supply chain management of SMEs using resource based view and institutional theory | Annals of Operations Research Skip to main content

Advertisement

Log in

Examining sustainable supply chain management of SMEs using resource based view and institutional theory

  • S.I. : SOME
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

The long-term viability of an organization hinges on social, environmental, and economic measures. However, based on extensive review of the literature, we have observed that measuring and improving the sustainable performance of supply chains is complex. We have grounded our theoretical framework in institutional theory and resource-based view and drawn thirteen hypotheses. We developed our instrument scientifically to validate our model and test our research hypotheses. The data was collected from the Indian auto components industry following Dillman’s total design test method. We gathered 205 usable responses. Following Peng and Lai’s (J Oper Manag 30(6):467–480, 2012) arguments, we have tested our model using variance-based structural equation modeling (PLS-SEM). We found that the constructs used for building our theoretical model possess construct validity and further satisfy the specified criteria for goodness of fit. The hypotheses test further suggests that coercive pressures under the mediation effect of top management belief and participation have significant influence on resource selection (i.e. supply chain connectivity and supply chain information sharing). The supply chain connectivity and supply chain information sharing have significant influence on environmental performance. Contrary to our belief, the normative and mimetic pressures have no significant influence on top management participation. The managerial implications of the findings are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adams, F. G., Richey, R. G., Autry, C. W., Morgan, T. R., & Gabler, C. B. (2014). Supply chain collaboration, integration, and relational technology: How complex operant resources increase performance outcomes. Journal of Business Logistics, 35(4), 299–317.

    Google Scholar 

  • Ageron, B., Gunasekaran, A., & Spalanzani, A. (2012). Sustainable supply management: An empirical study. International Journal of Production Economics, 140(1), 168–182.

    Google Scholar 

  • Akkermans, H., Bogerd, P., & Vos, B. (1999). Virtuous and vicious cycles on the road towards international supply chain management. International Journal of Operations and Production Management, 19(5/6), 565–582.

    Google Scholar 

  • Armstrong, J. S., & Overton, T. S. (1977). Estimating nonresponse bias in mail surveys. Journal of Marketing Research, 14(3), 396–402.

    Google Scholar 

  • Asgari, N., Nikbakhsh, E., Hill, A., & Farahani, R. Z. (2016). Supply chain management 1982–2015: A review. IMA Journal of Management Mathematics, 27(3), 353–379.

    Google Scholar 

  • Augier, M., & Teece, D. J. (2009). Dynamic capabilities and the role of managers in business strategy and economic performance. Organization Science, 20(2), 410–421.

    Google Scholar 

  • Babbar, S., & Prasad, S. (1998). International purchasing, inventory management and logistics research: An assessment and agenda. International Journal of Operations and Production Management, 18(1), 6–36.

    Google Scholar 

  • Bagozzi, R. P., Yi, Y., & Phillips, L. W. (1991). Assessing construct validity in organizational research. Administrative Science Quarterly, 36(3), 421–458.

    Google Scholar 

  • Barney, J. (1991). Firm resources and sustained competitive advantage. Journal of Management, 17(1), 99–120.

  • Barratt, M., & Choi, T. (2007). Mandated RFID and institutional responses: Cases of decentralized business units. Production and Operations Management, 16(5), 569–585.

  • Barratt, M., & Oke, A. (2007). Antecedents of supply chain visibility in retail supply chains: A resource-based theory perspective. Journal of Operations Management, 25(6), 1217–1233.

    Google Scholar 

  • Bello, D. C., Lohtia, R., & Sangtani, V. (2004). An institutional analysis of supply chain innovations in global marketing channels. Industrial Marketing Management, 33(1), 57–64.

    Google Scholar 

  • Bhattacharya, S., Mukhopadhyay, D., & Giri, S. (2014). Supply chain management in Indian automotive industry: Complexities, challenges and way ahead. International Journal of Managing Value and Supply Chains, 5(2), 49.

    Google Scholar 

  • Blome, C., Schoenherr, T., & Rexhausen, D. (2013). Antecedents and enablers of supply chain agility and its effect on performance: A dynamic capabilities perspective. International Journal of Production Research, 51(4), 1295–1318.

    Google Scholar 

  • Bowen, F. E., Cousins, P. D., Lamming, R. C., & Farukt, A. C. (2001). The role of supply management capabilities in green supply. Production and Operations Management, 10(2), 174–189.

    Google Scholar 

  • Boyer, K. K., & Hult, G. T. M. (2005). Extending the supply chain: Integrating operations and marketing in the online grocery industry. Journal of Operations Management, 23(6), 642–661.

    Google Scholar 

  • Boyer, K. K., & Olson, J. R. (2002). Drivers of internet purchasing success. Production and Operations Management, 11(4), 480–498.

    Google Scholar 

  • Brandenburg, M., & Rebs, T. (2015). Sustainable supply chain management: A modeling perspective. Annals of Operations Research, 229(1), 213–252.

    Google Scholar 

  • Brandon-Jones, E., Squire, B., Autry, C. W., & Petersen, K. J. (2014). A contingent resource-based perspective of supply chain resilience and robustness. Journal of Supply Chain Management, 50(3), 55–73.

    Google Scholar 

  • Butner, K. (2010). The smarter supply chain of the future. Strategy and Leadership, 38(1), 22–31.

    Google Scholar 

  • Cao, M., & Zhang, Q. (2011). Supply chain collaboration: Impact on collaborative advantage and firm performance. Journal of Operations Management, 29(3), 163–180.

  • Carter, C. R., & Liane Easton, P. (2011). Sustainable supply chain management: Evolution and future directions. International Journal of Physical Distribution and Logistics Management, 41(1), 46–62.

    Google Scholar 

  • Carter, C. R., & Rogers, D. S. (2008). A framework of sustainable supply chain management: moving toward new theory. International Journal of Physical Distribution & Logistics Management, 38(5), 360–387.

  • Chadwick, C., Super, J. F., & Kwon, K. (2015). Resource orchestration in practice: CEO emphasis on SHRM, commitment-based HR systems, and firm performance. Strategic Management Journal, 36(3), 360–376.

    Google Scholar 

  • Chatterjee, D., Grewal, R., & Sambamurthy, V. (2002). Shaping up for e-commerce: Institutional enablers of the organizational assimilation of web technologies. MIS Quarterly, 26(2), 65–89.

    Google Scholar 

  • Chen, A. J., Watson, R. T., Boudreau, M. C., & Karahanna, E. (2011). An institutional perspective on the adoption of Green IS & IT. Australasian Journal of Information Systems, 17(1), 5–27.

  • Chen, H., Daugherty, P. J., & Landry, T. D. (2009). Supply chain process integration: A theoretical framework. Journal of Business Logistics, 30(2), 27–46.

    Google Scholar 

  • Chen, I. J., & Paulraj, A. (2004). Towards a theory of supply chain management: The constructs and measurements. Journal of Operations Management, 22(2), 119–150.

    Google Scholar 

  • Chen, I. J., & Small, M. H. (1996). Planning for advanced manufacturing technology: A research framework. International Journal of Operations and Production Management, 16(5), 4–24.

    Google Scholar 

  • Colwell, S. R., & Joshi, A. W. (2013). Corporate ecological responsiveness: Antecedent effects of institutional pressure and top management commitment and their impact on organizational performance. Business Strategy and the Environment, 22(2), 73–91.

    Google Scholar 

  • Crook, T. R., & Esper, T. L. (2014). Do resources aid in supply chain functioning and management? Yes, but more (and more precise) research is needed. Journal of Supply Chain Management, 50(3), 94–97.

    Google Scholar 

  • Dao, V., Langella, I., & Carbo, J. (2011). From green to sustainability: Information technology and an integrated sustainability framework. The Journal of Strategic Information Systems, 20(1), 63–79.

    Google Scholar 

  • Daugherty, P. J., Ellinger, A. E., & Rogers, D. S. (1995). Information accessibility: Customer responsiveness and enhanced performance. International Journal of Physical Distribution and Logistics Management, 25(1), 4–17.

    Google Scholar 

  • Delmas, M. A., & Toffel, M. W. (2008). Organizational responses to environmental demands: Opening the black box. Strategic Management Journal, 29(10), 1027–1055.

    Google Scholar 

  • Dewett, T., & Jones, G. R. (2001). The role of information technology in the organization: A review, model, and assessment. Journal of Management, 27(3), 313–346.

    Google Scholar 

  • Dillman, D. A. (2011). Mail and internet surveys: The tailored design method-2007 update with new internet, visual, and mixed-mode guide. London: Wiley.

    Google Scholar 

  • DiMaggio, P. J., & Powell, W. W. (1983). The iron cage revisited: Institutional isomorphism and collective rationality in organizational fields. American Sociological Review, 48(2), 147–160.

    Google Scholar 

  • Droge, C., Jayaram, J., & Vickery, S. K. (2004). The effects of internal versus external integration practices on time-based performance and overall firm performance. Journal of Operations Management, 22(6), 557–573.

    Google Scholar 

  • Dubey, R., Gunasekaran, A., Childe, S. J., Papadopoulos, T., Wamba, S. F., & Song, M. (2016). Towards a theory of sustainable consumption and production: Constructs and measurement. Resources, Conservation and Recycling, 106, 78–89.

  • Dubey, R., Gunasekaran, A., Childe, S. J., Papadopoulos, T., Luo, Z., & Roubaud, D. (2017). Upstream supply chain visibility and complexity effect on focal company’s sustainable performance: Indian manufacturers’ perspective. Annals of Operations Research, pp. 1–25.

  • Du, S., Ma, F., Fu, Z., Zhu, L., & Zhang, J. (2015). Game-theoretic analysis for an emission-dependent supply chain in a ‘cap-and-trade’system. Annals of Operations Research, 228(1), 135–149.

  • Du, S., Hu, L., & Wang, L. (2017). Low-carbon supply policies and supply chain performance with carbon concerned demand. Annals of Operations Research, 255(1–2), 569–590.

    Google Scholar 

  • Dyllick, T., & Hockerts, K. (2002). Beyond the business case for corporate sustainability. Business Strategy and the Environment, 11(2), 130–141.

    Google Scholar 

  • Enslow, B. (2000). Internet fulfillment: The next supply chain frontier. Achieving Supply Chain Excellence through Technology (ASCET), 2.

  • Fawcett, S. E., & Clinton, S. R. (1996). Enhancing logistics performance to improve the competitiveness of manufacturing organizations. Production and Inventory Management Journal, 37(1), 40.

    Google Scholar 

  • Fawcett, S. E., Wallin, C., Allred, C., Fawcett, A. M., & Magnan, G. M. (2011). Information technology as an enabler of supply chain collaboration: A dynamic-capabilities perspective. Journal of Supply Chain Management, 47(1), 38–59.

    Google Scholar 

  • Feldmann, M., & Müller, S. (2003). An incentive scheme for true information providing in supply chains. Omega, 31(2), 63–73.

    Google Scholar 

  • Fields, G. (2002). The Internet and the production network of Dell computer. Part III. In: From communications and innovation to business organization and territory: The production networks of Swift Meat Packing and Dell Computer, Working Paper, 149.

  • Flynn, B. B., Huo, B., & Zhao, X. (2010). The impact of supply chain integration on performance: A contingency and configuration approach. Journal of Operations Management, 28(1), 58–71.

    Google Scholar 

  • Foerstl, K., Reuter, C., Hartmann, E., & Blome, C. (2010). Managing supplier sustainability risks in a dynamically changing environment—sustainable supplier management in the chemical industry. Journal of Purchasing and Supply Management, 16(2), 118–130.

    Google Scholar 

  • Fornell, C., & Larcker, D. F. (1981). Structural equation models with unobservable variables and measurement error: Algebra and statistics. Journal of Marketing Research, pp. 382–388.

  • Foss, N. J., & Eriksen, B. (1995). Competitive advantage and industry capabilities. In Resource-based and evolutionary theories of the firm: Towards a synthesis (pp. 43–69). Springer US.

  • Fugate, B. S., Mentzer, J. T., & Stank, T. P. (2010). Logistics performance: Efficiency, effectiveness, and differentiation. Journal of Business Logistics, 31(1), 43–62.

    Google Scholar 

  • Garbie, I. H. (2014). An analytical technique to model and assess sustainable development index in manufacturing enterprises. International Journal of Production Research, 52(16), 4876–4915.

    Google Scholar 

  • Gattiker, T. F., & Carter, C. R. (2010). Understanding project champions’ ability to gain intra-organizational commitment for environmental projects. Journal of Operations Management, 28(1), 72–85.

    Google Scholar 

  • Gholami, R., Sulaiman, A. B., Ramayah, T., & Molla, A. (2013). Senior managers’ perception on green information systems (IS) adoption and environmental performance: Results from a field survey. Information and Management, 50(7), 431–438.

    Google Scholar 

  • Gligor, M. D., & Holcomb, M. (2014). The road to supply chain agility: An RBV perspective on the role of logistics capabilities. The International Journal of Logistics Management, 25(1), 160–179.

    Google Scholar 

  • Gopal, P. R. C., & Thakkar, J. (2015). Development of composite sustainable supply chain performance index for the automobile industry. International Journal of Sustainable Engineering, 8(6), 366–385.

    Google Scholar 

  • Gopal, P. R. C., & Thakkar, J. (2016a). Analysing critical success factors to implement sustainable supply chain practices in Indian automobile industry: A case study. Production Planning and Control, 27, 1–14.

    Google Scholar 

  • Gopal, P. R. C., & Thakkar, J. (2016b). Sustainable supply chain practices: An empirical investigation on Indian automobile industry. Production Planning and Control, 27(1), 49–64.

    Google Scholar 

  • Grant, R. M. (1991). The resource-based theory of competitive advantage: Implications for strategy formulation. California Management Review, 33(3), 114–135.

    Google Scholar 

  • Greenwood, R., & Hinings, C. R. (1996). Understanding radical organizational change: Bringing together the old and the new institutionalism. Academy of management review, 21(4), 1022–1054.

    Google Scholar 

  • Größler, A., & Grübner, A. (2006). An empirical model of the relationships between manufacturing capabilities. International Journal of Operations and Production Management, 26(5), 458–485.

    Google Scholar 

  • Guide, V. D. R., & Ketokivi, M. (2015). Notes from the editors: Redefining some methodological criteria for the journal. Journal of Operations Management, 37, 5–8.

    Google Scholar 

  • Gunasekaran, A., & Ngai, E. W. (2004). Information systems in supply chain integration and management. European Journal of Operational Research, 159(2), 269–295.

    Google Scholar 

  • Habidin, N. F., Zubir, A. F. M., Fuzi, N. M., Latip, N. A. M., & Azman, M. N. A. (2015). Sustainable manufacturing practices in Malaysian automotive industry: Confirmatory factor analysis. Journal of Global Entrepreneurship Research, 5(1), 1.

    Google Scholar 

  • Hair, J. F., Anderson, R. E., Babin, B. J., & Black, W. C. (2010). Multivariate data analysis: A global perspective (Vol. 7). Upper Saddle River, NJ: Pearson.

    Google Scholar 

  • Hair, J., Black, W., Babin, B., Anderson, R., & Tatham, R. (2006). Multivariate data analysis (6th ed.). Upper Saddle River, N.J.: Pearson Prentice Hall.

    Google Scholar 

  • Halldórsson, Á., Kotzab, H., & Skjøtt-Larsen, T. (2009). Supply chain management on the crossroad to sustainability: a blessing or a curse?. Logistics Research, 1(2), 83–94.

  • Hamel, G., Doz, Y. L., & Prahalad, C. K. (1989). Collaborate with your competitors and win. Harvard Business Review, 67(1), 133–139.

  • Henseler, J., Ringle, C. M., & Sinkovics, R. R. (2009). The use of partial least squares path modeling in international marketing. Advances in International Marketing, 20(1), 277–319.

    Google Scholar 

  • Heras-Saizarbitoria, I., Arana Landín, G., & Molina-Azorín, J. F. (2011). Do drivers matter for the benefits of ISO 14001? International Journal of Operations and Production Management, 31(2), 192–216.

    Google Scholar 

  • Hitt, M. A., Xu, K., & Carnes, C. M. (2016). Resource based theory in operations management research. Journal of Operations Management, 41, 77–94.

    Google Scholar 

  • Hoejmose, S. U., & Adrien-Kirby, A. J. (2012). Socially and environmentally responsible procurement: A literature review and future research agenda of a managerial issue in the 21st century. Journal of Purchasing and Supply Management, 18(4), 232–242.

    Google Scholar 

  • Hoopes, D. G., Madsen, T. L., & Walker, G. (2003). Guest editors’ introduction to the special issue: why is there a resource-based view? Toward a theory of competitive heterogeneity. Strategic Management Journal, 24(10), 889–902.

  • Horvath, L. (2001). Collaboration: The key to value creation in supply chain management. Supply Chain Management: An International Journal, 6(5), 205–207.

    Google Scholar 

  • Hunt, S. D., & Davis, D. F. (2012). Grounding supply chain management in resource-advantage theory: In defense of a resource-based view of the firm. Journal of Supply Chain Management, 48(2), 14–20.

    Google Scholar 

  • Ireland, R., & Bruce, R. (2000). CPFR: Only the beginning of collaboration. Supply Chain Management Review, 4(4), 80–88.

    Google Scholar 

  • Jabbour, C. J. C., Jugend, D., de Sousa Jabbour, A. B. L., Gunasekaran, A., & Latan, H. (2015). Green product development and performance of Brazilian firms: Measuring the role of human and technical aspects. Journal of Cleaner Production, 87, 442–451.

    Google Scholar 

  • Jindal, A., & Sangwan, K. S. (2016). Multi-objective fuzzy mathematical modelling of closed-loop supply chain considering economical and environmental factors. Annals of Operations Research, pp. 1–26.

  • Kauppi, K. (2013). Extending the use of institutional theory in operations and supply chain management research: Review and research suggestions. International Journal of Operations and Production Management, 33(10), 1318–1345.

    Google Scholar 

  • Kaur, H., & Singh, S. P. (2016). Sustainable procurement and logistics for disaster resilient supply chain. Annals of Operations Research, pp. 1–46.

  • Kembro, J., & Näslund, D. (2014). Information sharing in supply chains, myth or reality? A critical analysis of empirical literature. International Journal of Physical Distribution and Logistics Management, 44(3), 179–200.

    Google Scholar 

  • Ketchen, D. J., & Giunipero, L. C. (2004). The intersection of strategic management and supply chain management. Industrial Marketing Management, 33(1), 51–56.

    Google Scholar 

  • Ketchen, D. J., & Hult, G. T. M. (2007). Bridging organization theory and supply chain management: The case of best value supply chains. Journal of Operations Management, 25(2), 573–580.

    Google Scholar 

  • Khalifa, M., & Davison, M. (2006). SME adoption of IT: The case of electronic trading systems. IEEE Transactions on Engineering Management, 53(2), 275–284.

    Google Scholar 

  • Ketokivi, M. A., & Schroeder, R. G. (2004). Perceptual measures of performance: fact or fiction?. Journal of Operations Management, 22(3), 247–264.

  • Klassen, R. D. (2001). Plant level environmental management orientation: The influence of management views and plant characteristics. Production and Operations Management, 10(3), 257–275.

    Google Scholar 

  • Kock, N. (2014). Advanced mediating effects tests, multi-group analyses, and measurement model assessments in PLS-based SEM. International Journal of e-Collaboration, 10(3), 1–13.

    Google Scholar 

  • Kock, N. (2015). WarpPLS 5.0 User Manual. 2015. Laredo, TX: ScriptWarp Systems.

  • Kock, N. (2016). Non-normality propagation among latent variables and indicators in PLS-SEM simulations. Journal of Modern Applied Statistical Methods, 15(1), 299–315.

    Google Scholar 

  • Kock, N., & Lynn, G. S. (2012). Lateral collinearity and misleading results in variance-based SEM: An illustration and recommendations. Journal of the Association for Information Systems, 13(7), 546–580.

    Google Scholar 

  • Kumar, D., & Rahman, Z. (2016). Buyer supplier relationship and supply chain sustainability: Empirical study of Indian automobile industry. Journal of Cleaner Production, 131, 836–848.

    Google Scholar 

  • Lai, K. H., Wong, C. W., & Lam, J. S. L. (2015). Sharing environmental management information with supply chain partners and the performance contingencies on environmental munificence. International Journal of Production Economics, 164, 445–453.

    Google Scholar 

  • Lambert, D. M., & Cooper, M. C. (2000). Issues in supply chain management. Industrial Marketing Management, 29(1), 65–83.

    Google Scholar 

  • Lau, H. C., & Lee, W. B. (2000). On a responsive supply chain information system. International Journal of Physical Distribution and Logistics Management, 30(7/8), 598–610.

    Google Scholar 

  • Lee, V. H., Ooi, K. B., Chong, A. Y. L., & Seow, C. (2014). Creating technological innovation via green supply chain management: An empirical analysis. Expert Systems with Applications, 41(16), 6983–6994.

    Google Scholar 

  • Lee, H. L., & Whang, S. (2000). Information sharing in a supply chain. International Journal of Manufacturing Technology and Management, 1(1), 79–93.

    Google Scholar 

  • Liang, H., Saraf, N., Hu, Q., & Xue, Y. (2007). Assimilation of enterprise systems: The effect of institutional pressures and the mediating role of top management. MIS Quarterly, 31(1), 59–87.

    Google Scholar 

  • Li, S., & Lin, B. (2006). Accessing information sharing and information quality in supply chain management. Decision Support Systems, 42(3), 1641–1656.

    Google Scholar 

  • Linton, J. D., Klassen, R., & Jayaraman, V. (2007). Sustainable supply chains: An introduction. Journal of Operations Management, 25(6), 1075–1082.

    Google Scholar 

  • Liu, H., Ke, W., Wei, K. K., Gu, J., & Chen, H. (2010). The role of institutional pressures and organizational culture in the firm’s intention to adopt internet-enabled supply chain management systems. Journal of Operations Management, 28(5), 372–384.

    Google Scholar 

  • Liu, X., Yang, J., Qu, S., Wang, L., Shishime, T., & Bao, C. (2012). Sustainable production: Practices and determinant factors of green supply chain management of Chinese companies. Business Strategy and the Environment, 21(1), 1–16.

    Google Scholar 

  • Madhok, A. (2002). Reassessing the fundamentals and beyond: Ronald Coase, the transaction cost and resource-based theories of the firm and the institutional structure of production. Strategic Management Journal, 23(6), 535–550.

  • Magretta, J. (1998). The power of virtual integration: An interview with Dell Computer’s Michael Dell. Harvard Business Review, 7(2), 72–84.

    Google Scholar 

  • Malhotra, N. K., & Dash, S. (2011). Marketing research: An applied orientation (6th ed., p. 948). New Delhi: Pearson Education.

    Google Scholar 

  • Malhotra, M. K., & Grover, V. (1998). An assessment of survey research in POM: From constructs to theory. Journal of Operations Management, 16(4), 407–425.

    Google Scholar 

  • Massaroni, E., Cozzolino, A., & Wankowicz, E. (2016). Sustainability reporting of logistics service providers in Europe. International Journal of Environment and Health, 8(1), 38–58.

    Google Scholar 

  • Mayyas, A., Qattawi, A., Omar, M., & Shan, D. (2012). Design for sustainability in automotive industry: A comprehensive review. Renewable and Sustainable Energy Reviews, 16(4), 1845–1862.

    Google Scholar 

  • Mello, J. E., & Stank, T. P. (2005). Linking firm culture and orientation to supply chain success. International Journal of Physical Distribution and Logistics Management, 35(8), 542–554.

    Google Scholar 

  • Melville, N. P. (2010). Information systems innovation for environmental sustainability. MIS Quarterly, 34(1), 1–21.

    Google Scholar 

  • Meredith, J. (1993). Theory building through conceptual methods. International Journal of Operations and Production Management, 13(5), 3–11.

    Google Scholar 

  • Min, S., Mentzer, J. T. and Ladd, T. (2004). A market orientation in supply chain management. working paper, Department of Marketing, The University of Oklahoma, Norman, OK.

  • Min, H., & Galle, W. P. (1997). Green purchasing strategies: Trends and implications. International Journal of Purchasing and Materials Management, 33(2), 10–17.

    Google Scholar 

  • Min, H., & Galle, W. P. (2001). Green purchasing practices of US firms. International Journal of Operations and Production Management, 21(9), 1222–1238.

    Google Scholar 

  • Miri-Lavassani, K., Movahedi, B., & Kumar, V. (2009). Developments in theories of supply chain management: The case of B2B electronic marketplace adoption. International Journal of Knowledge, Culture and Change Management, 9(6), 85–98.

    Google Scholar 

  • Mollenkopf, D., Stolze, H., Tate, W. L., & Ueltschy, M. (2010). Green, lean, and global supply chains. International Journal of Physical Distribution and Logistics Management, 40(1/2), 14–41.

    Google Scholar 

  • Moshtari, M. (2016). Inter-organizational fit, relationship management capability, and collaborative performance within a humanitarian setting. Production and Operations Management, 25(9), 1542–1557.

    Google Scholar 

  • Nair, A., & Prajogo, D. (2009). Internalization of ISO 9000 standards: The antecedent role of functionalist and institutionalist drivers and performance implications. International Journal of Production Research, 47(16), 4545–4568.

    Google Scholar 

  • New, S., Green, K., & Morton, B. (2000). Buying the environment: The multiple meanings of green supply. In S. Fineman (Ed.), The business of greening (pp. 3–53). London: Routledge.

    Google Scholar 

  • Nidumolu, R., Prahalad, C. K., & Rangaswami, M. R. (2009). Why sustainability is now the key driver of innovation. Harvard Business Review, 87(9), 56–64.

    Google Scholar 

  • Nunally, J. C., & Bernstein, I. H. (1978). Psychometric testing. New York: McGraw.

  • O’Callaghan, R., Kaufmann, P. J., & Konsynski, B. R. (1992). Adoption correlates and share effects of electronic data interchange systems in marketing channels. The Journal of Marketing, pp. 45–56.

  • Oliver, C. (1997). Sustainable competitive advantage: Combining institutional and resource-based views. Strategic Management Journal, 18(9), 697–713.

    Google Scholar 

  • Ortas, E., Moneva, J. M., & Alvarez, I. (2014). Sustainable supply chain and company performance: A global examination. Supply Chain Management: An International Journal, 19(3), 9–9.

    Google Scholar 

  • Pagell, M., & Shevchenko, A. (2014). Why research in sustainable supply chain management should have no future. Journal of Supply Chain Management, 50(1), 44–55.

    Google Scholar 

  • Pagell, M., & Wu, Z. (2009). Building a more complete theory of sustainable supply chain management using case studies of 10 exemplars. Journal of Supply Chain Management, 45(2), 37–56.

    Google Scholar 

  • Pearl, J. (2009). Causal inference in statistics: An overview. Statistics Surveys, 3, 96–146.

    Google Scholar 

  • Peng, D. X., & Lai, F. (2012). Using partial least squares in operations management research: A practical guideline and summary of past research. Journal of Operations Management, 30(6), 467–480.

    Google Scholar 

  • Podsakoff, P. M., MacKenzie, S. B., Lee, J. Y., & Podsakoff, N. P. (2003). Common method biases in behavioral research: A critical review of the literature and recommended remedies. Journal of Applied Psychology, 88(5), 879–903.

    Google Scholar 

  • Podsakoff, P. M., & Organ, D. W. (1986). Self-reports in organizational research: Problems and prospects. Journal of Management, 12(4), 531–544.

    Google Scholar 

  • Prajogo, D., & Olhager, J. (2012). Supply chain integration and performance: The effects of long-term relationships, information technology and sharing, and logistics integration. International Journal of Production Economics, 135(1), 514–522.

    Google Scholar 

  • Ravet, D. (2012). An exploration of facility location metrics in international supply chain. In Trends in International Business 2012 (p. 19).

  • Revelle, W., & Zinbarg, R. E. (2009). Coefficients alpha, beta, omega, and the glb: Comments on Sijtsma. Psychometrika, 74(1), 145–154.

    Google Scholar 

  • Roberts, M. R., & Whited, T. M. (2013). Endogeneity in empirical corporate finance. In G. M. Constantinides, M. Harris, & R. M. Stulz (Eds.), Handbook of the economics of finance (Vol. 2A, pp. 493–572). Amsterdam: Elsevier.

    Google Scholar 

  • Rosenthal, R., & Rosnow, R. L. (1991). Essentials of behavioral research: Methods and data analysis. New York: McGraw-Hill Humanities Social.

    Google Scholar 

  • Rungtusanatham, M., Salvador, F., Forza, C., & Choi, T. Y. (2003). Supply-chain linkages and operational performance: A resource-based-view perspective. International Journal of Operations and Production Management, 23(9), 1084–1099.

    Google Scholar 

  • Sabath, R. E., & Frentzel, D. G. (1997). Go for growth! Supply chain management’s role in growing revenues. Supply Chain Management Review, 1(2), 16–23.

    Google Scholar 

  • Sarkis, J., Zhu, Q., & Lai, K. H. (2011). An organizational theoretic review of green supply chain management literature. International Journal of Production Economics, 130(1), 1–15.

    Google Scholar 

  • Saunders, M. J. (1995). Chains, pipelines, networks and value stream: the role, nature and value of such metaphors in forming perceptions of the task of purchasing and supply management. In First Worldwide research symposium on purchasing and supply chain management Tempe, Arizona (March) (pp. 476–485).

  • Saunders, M. J. (1998). The comparative analysis of supply chains and implications for the development of strategies. In Seventh international IPSERA conference (Vol. 477).

  • Seles, B. M. R. P., de Sousa Jabbour, A. B. L., Jabbour, C. J. C., & Dangelico, R. M. (2016). The green bullwhip effect, the diffusion of green supply chain practices, and institutional pressures: Evidence from the automotive sector. International Journal of Production Economics, 182, 342–355.

    Google Scholar 

  • Singh, A. K., Jha, S. K., & Prakash, A. (2014). Green manufacturing (GM) performance measures: An empirical investigation from Indian MSMEs. International Journal of Research in Advent Technology, 2(4), 51–65.

    Google Scholar 

  • Sirmon, D. G., Gove, S., & Hitt, M. A. (2008). Resource management in dyadic competitive rivalry: The effects of resource bundling and deployment. Academy of Management Journal, 51(5), 919–935.

    Google Scholar 

  • Spirtes, P., Meek, C., & Richardson, T. (1995). Causal inference in the presence of latent variables and selection bias. In Proceedings of the eleventh conference on uncertainty in artificial intelligence (pp. 499–506). Morgan Kaufmann Publishers Inc.

  • Stank, T. P., Daugherty, P. J., & Ellinger, A. E. (1999). Marketing/logistics integration and firm performance. The International Journal of Logistics Management, 10(1), 11–24.

    Google Scholar 

  • Sutton, M. J. (1997). The role of electronic data interchange in the transportation industry (I). Defense Transportation Journal, 53, 20.

    Google Scholar 

  • Taylor, F. W. (1947). Scientific management. New York and London: Harper and Row.

    Google Scholar 

  • Taylor, A., & Taylor, M. (2009). Operations management research: Contemporary themes, trends and potential future directions. International Journal of Operations and Production Management, 29(12), 1316–1340.

    Google Scholar 

  • Tenenhaus, M., Vinzi, V. E., Chatelin, Y. M., & Lauro, C. (2005). PLS path modeling. Computational Statistics and Data Analysis, 48(1), 159–205.

    Google Scholar 

  • Teo, H. H., Wei, K. K., & Benbasat, I. (2003). Predicting intention to adopt interorganizational linkages: An institutional perspective. MIS Quarterly, 27(1), 19–49.

    Google Scholar 

  • Toptal, A., & Çetinkaya, B. (2017). How supply chain coordination affects the environment: A carbon footprint perspective. Annals of Operations Research, 250(2), 487–519.

    Google Scholar 

  • Touboulic, A., & Walker, H. (2015). Theories in sustainable supply chain management: A structured literature review. International Journal of Physical Distribution and Logistics Management, 45(1/2), 16–42.

    Google Scholar 

  • Vachon, S., & Klassen, R. D. (2008). Environmental management and manufacturing performance: The role of collaboration in the supply chain. International Journal of Production Economics, 111(2), 299–315.

    Google Scholar 

  • Vachon, S., & Mao, Z. (2008). Linking supply chain strength to sustainable development: A country-level analysis. Journal of Cleaner Production, 16(15), 1552–1560.

    Google Scholar 

  • Vanpoucke, E., Vanpoucke, E., Vereecke, A., Vereecke, A., Muylle, S., & Muylle, S. (2017). Leveraging the impact of supply chain integration through information technology. International Journal of Operations and Production Management, 37(4), 510–530.

    Google Scholar 

  • Wagner, S. M., & Kemmerling, R. (2010). Handling nonresponse in logistics research. Journal of Business Logistics, 31(2), 357–381.

    Google Scholar 

  • Waldo, D., Jaques, E., Kilman, R. H., Pondy, L. R., Slevin, D. P., Kilman, R. H., et al. (1978). Organization theory: Revisiting the elephant. Public Administration Review, 38(6), 589–597.

    Google Scholar 

  • Walley, N., & Whitehead, B. (1994). It’s not easy being green. The Earth Scan Reader in Business and the Environment, pp. 36–44.

  • Wang, G., & Gunasekaran, A. (2017). Modeling and analysis of sustainable supply chain dynamics. Annals of Operations Research, 250(2), 521–536.

    Google Scholar 

  • Weber, M. (2009). The theory of social and economic organization. New York: Simon and Schuster.

    Google Scholar 

  • Wetzels, M., Odekerken-Schroder, G., & van Oppen, C. (2009). Using PLS path modeling for assessing hierarchical construct models: Guidelines and empirical illustration. MIS Quarterly, 33(1), 177–195.

    Google Scholar 

  • Williams, L. R., Nibbs, A., Irby, D., & Finley, T. (1997). Logistics integration: The effect of information technology, team composition, and corporate competitive positioning. Journal of Business Logistics, 18(2), 31.

    Google Scholar 

  • Winter, M., & Knemeyer, A. M. (2013). Exploring the integration of sustainability and supply chain management: Current state and opportunities for future inquiry. International Journal of Physical Distribution and Logistics Management, 43(1), 18–38.

    Google Scholar 

  • Wu, L., Chuang, C. H., & Hsu, C. H. (2014). Information sharing and collaborative behaviors in enabling supply chain performance: A social exchange perspective. International Journal of Production Economics, 148, 122–132.

    Google Scholar 

  • Yeung, A. C. L., Lee, T. S., & Chan, L. Y. (2003). Senior management perspectives and ISO 9000 effectiveness: An empirical research. International Journal of Production Research, 41(3), 545–569.

    Google Scholar 

  • Zailani, S., Jeyaraman, K., Vengadasan, G., & Premkumar, R. (2012). Sustainable supply chain management (SSCM) in Malaysia: A survey. International Journal of Production Economics, 140(1), 330–340.

    Google Scholar 

  • Zhao, M., Dröge, C., & Stank, T. P. (2001). The effects of logistics capabilities on firm performance: Customer-focused versus information-focused capabilities. Journal of Business Logistics, 22(2), 91–107.

    Google Scholar 

  • Zhu, Q., & Geng, Y. (2013). Drivers and barriers of extended supply chain practices for energy saving and emission reduction among Chinese manufacturers. Journal of Cleaner Production, 40, 6–12.

    Google Scholar 

  • Zhu, Q., & Sarkis, J. (2004). Relationships between operational practices and performance among early adopters of green supply chain management practices in Chinese manufacturing enterprises. Journal of Operations Management, 22(3), 265–289.

  • Zhu, Q., & Sarkis, J. (2006). An inter-sectoral comparison of green supply chain management in China: Drivers and practices. Journal of Cleaner Production, 14(5), 472–486.

    Google Scholar 

  • Zhu, Q., & Sarkis, J. (2007). The moderating effects of institutional pressures on emergent green supply chain practices and performance. International Journal of Production Research, 45(18–19), 4333–4355.

  • Zhu, Q., Sarkis, J., Lai, K. H., & Geng, Y. (2008). The role of organizational size in the adoption of green supply chain management practices in China. Corporate Social Responsibility and Environmental Management, 15(6), 322–337.

    Google Scholar 

  • Zsidisin, G. A., Melnyk, S. A., & Ragatz, G. L. (2005). An institutional theory perspective of business continuity planning for purchasing and supply management. International Journal of Production Research, 43(16), 3401–3420.

    Google Scholar 

Download references

Acknowledgements

We gratefully appreciate the constructive inputs provided by the handling editor, managing editor and three reviewers, who have helped improve the quality of the paper significantly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angappa Gunasekaran.

Appendices

Appendix 1: Reliability test result—Cronbach’s alpha values

CP

NP

MP

TMB

TMP

SCC

SCIS

SP

EP

ECOP

0.621

0.948

0.846

0.965

0.959

0.965

0.938

0.984

0.943

0.866

Appendix 2: Loadings of the indicator variables

Construct

CP

NP

MP

TMB

TMP

SCC

SCIS

SP

EP

ECOP

CR

0.8

0.967

0.907

0.977

0.974

0.977

0.952

0.989

0.956

0.909

AVE

0.576

0.906

0.765

0.934

0.925

0.935

0.801

0.968

0.784

0.715

\(\hbox {R}^{2}\) Values

   

0.068

0.059

0.932

0.437

0.028

0.591

\(-\) 0.018

\(\hbox {Q}^{2}\) Values

   

0.07

0.211

0.933

0.428

0.055

0.511

0.046

Appendix 3: Correlations among the latent variables

Component

CP

NP

MP

TMB

TMP

SCC

SCIS

ECOP

SP

EP

CP

0.76

         

NP

0.61

0.95

        

MP

0.24

0.39

0.87

       

TMB

\(-\) 0.03

0.00

0.23

0.96

      

TMP

0.16

0.15

0.06

0.00

0.96

     

SCC

0.43

0.61

0.59

0.11

0.19

0.97

    

SCIS

\(-\) 0.07

\(-\) 0.10

\(-\) 0.17

\(-\) 0.06

0.06

\(-\) 0.17

0.89

   

ECOP

0.20

0.20

0.11

0.03

0.36

0.30

0.02

0.96

  

SP

\(-\) 0.05

\(-\) 0.03

\(-\) 0.09

\(-\) 0.05

0.19

\(-\) 0.06

0.11

0.14

0.88

 

EP

\(-\) 0.07

\(-\) 0.10

\(-\) 0.15

0.09

0.16

\(-\) 0.19

0.24

0.01

\(-\) 0.08

0.84

Appendix 4: Combined loadings and cross loadings

 

CP

NP

MP

TMB

TMP

SCC

SCIS

SP

EP

ECOP

p value

CP1

0.72

\(-\) 0.14

2.58

3.48

\(-\) 0.75

0.76

\(-\) 0.05

0.07

\(-\) 5.62

\(-\) 0.19

\(<0.001\)

CP2

0.65

0.04

\(-\) 1.66

\(-\) 2.14

0.13

\(-\) 0.13

\(-\) 0.04

\(-\) 0.04

3.55

0.29

\(<0.001\)

CP3

0.88

0.09

\(-\) 0.88

\(-\) 1.26

0.51

\(-\) 0.52

0.07

\(-\) 0.02

1.96

\(-\) 0.06

\(<0.001\)

NP1

0.01

0.96

\(-\) 0.35

\(-\) 0.11

\(-\) 0.12

0.13

0.01

0.00

0.37

\(-\) 0.01

\(<0.001\)

NP2

0.00

0.94

\(-\) 0.62

\(-\) 0.96

0.18

\(-\) 0.22

0.02

0.00

1.38

\(-\) 0.02

\(<0.001\)

NP3

\(-\) 0.02

0.96

0.97

1.05

\(-\) 0.06

0.08

\(-\) 0.03

0.00

\(-\) 1.72

0.03

\(<0.001\)

MP1

0.03

\(-\) 0.14

0.87

7.57

0.15

\(-\) 0.19

\(-\) 0.02

0.01

\(-\) 13.28

\(-\) 0.03

\(<0.001\)

MP2

\(-\) 0.04

0.18

0.91

1.15

\(-\) 0.16

0.22

0.03

\(-\) 0.01

\(-\) 2.06

0.03

\(<0.001\)

MP3

0.01

\(-\) 0.05

0.84

\(-\) 9.12

0.02

\(-\) 0.04

\(-\) 0.01

0.01

16.04

\(-\) 0.01

\(<0.001\)

TMB1

\(-\) 0.01

\(-\) 0.03

\(-\) 5.82

0.95

0.15

\(-\) 0.13

0.00

\(-\) 0.02

14.25

0.00

\(<0.001\)

TMB2

0.03

0.02

2.40

0.98

\(-\) 0.10

0.09

\(-\) 0.01

0.00

\(-\) 5.85

\(-\) 0.01

\(<0.001\)

TMB3

\(-\) 0.02

0.01

3.25

0.97

\(-\) 0.04

0.03

0.01

0.02

\(-\) 7.97

0.01

\(<0.001\)

TMP1

0.01

0.10

\(-\) 0.90

\(-\) 0.94

0.97

\(-\) 0.02

0.01

0.02

1.68

\(-\) 0.03

\(<0.001\)

TMP2

0.00

0.02

0.15

0.17

0.96

0.44

0.00

0.00

\(-\) 0.30

\(-\) 0.02

\(<0.001\)

TMP3

0.00

\(-\) 0.12

0.76

0.79

0.96

\(-\) 0.42

\(-\) 0.02

\(-\) 0.02

\(-\) 1.40

0.05

\(<0.001\)

SCC1

\(-\) 0.04

\(-\) 0.04

0.03

0.06

\(-\) 0.15

0.96

0.00

\(-\) 0.01

\(-\) 0.06

\(-\) 0.02

\(<0.001\)

SCC2

0.04

0.04

\(-\) 0.03

\(-\) 0.06

\(-\) 0.38

0.95

0.00

0.01

0.06

0.02

\(<0.001\)

SCC3

0.00

0.00

0.00

0.00

0.51

0.99

0.00

0.00

0.00

0.00

\(<0.001\)

SCIS1

0.01

\(-\) 0.07

\(-\) 1.78

\(-\) 2.91

0.16

\(-\) 0.01

0.92

0.03

4.42

0.07

\(<0.001\)

SCIS2

0.02

0.00

\(-\) 1.79

\(-\) 2.73

0.14

\(-\) 0.01

0.93

0.02

4.21

0.04

\(<0.001\)

SCIS3

\(-\) 0.06

\(-\) 0.36

3.26

3.83

\(-\) 0.73

0.51

0.87

\(-\) 0.04

\(-\) 6.36

0.00

\(<0.001\)

SCIS4

0.08

0.37

\(-\) 0.54

0.09

0.11

\(-\) 0.12

0.87

0.05

0.12

\(-\) 0.06

\(<0.001\)

SCIS5

\(-\) 0.06

0.06

1.05

2.03

0.30

\(-\) 0.36

0.88

\(-\) 0.06

\(-\) 2.86

\(-\) 0.06

\(<0.001\)

SP1

\(-\) 0.01

\(-\) 0.03

\(-\) 0.27

\(-\) 0.45

0.00

0.00

\(-\) 0.01

0.99

0.70

0.01

\(<0.001\)

SP2

0.02

0.06

0.29

0.58

0.01

\(-\) 0.04

0.02

0.98

\(-\) 0.88

0.01

\(<0.001\)

SP3

\(-\) 0.01

\(-\) 0.03

\(-\) 0.01

\(-\) 0.13

\(-\) 0.01

0.04

\(-\) 0.01

0.98

0.17

\(-\) 0.02

\(<0.001\)

EP1

0.03

\(-\) 0.14

7.22

7.57

0.15

\(-\) 0.19

\(-\) 0.02

0.01

0.71

\(-\) 0.03

\(<0.001\)

EP2

\(-\) 0.04

0.18

1.69

1.15

\(-\) 0.16

0.22

0.03

\(-\) 0.01

0.82

0.03

\(<0.001\)

EP3

0.01

\(-\) 0.05

\(-\) 6.61

\(-\) 9.12

0.02

\(-\) 0.04

\(-\) 0.01

0.01

0.94

\(-\) 0.01

\(<0.001\)

EP4

\(-\) 0.01

\(-\) 0.03

\(-\) 5.82

\(-\) 8.05

0.15

\(-\) 0.13

0.00

\(-\) 0.02

0.95

0.00

\(<0.001\)

EP5

0.03

0.02

2.40

4.67

\(-\) 0.10

0.09

\(-\) 0.01

0.00

0.94

\(-\) 0.01

\(<0.001\)

EP6

\(-\) 0.02

0.01

3.25

6.01

\(-\) 0.04

0.03

0.01

0.02

0.92

0.01

\(<0.001\)

ECOP1

\(-\) 0.12

0.26

\(-\) 1.44

\(-\) 2.06

0.34

\(-\) 0.34

\(-\) 0.10

\(-\) 0.02

3.18

0.78

\(<0.001\)

ECOP3

0.00

0.21

\(-\) 3.29

\(-\) 4.11

1.26

\(-\) 1.32

0.08

0.05

6.88

0.84

\(<0.001\)

ECOP4

0.10

\(-\) 0.16

1.39

1.74

\(-\) 0.39

0.43

0.08

\(-\) 0.02

\(-\) 2.90

0.91

\(<0.001\)

ECOP5

0.00

\(-\) 0.27

3.11

4.12

\(-\) 1.15

1.16

\(-\) 0.08

\(-\) 0.01

\(-\) 6.64

0.85

\(<0.001\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shibin, K.T., Dubey, R., Gunasekaran, A. et al. Examining sustainable supply chain management of SMEs using resource based view and institutional theory. Ann Oper Res 290, 301–326 (2020). https://doi.org/10.1007/s10479-017-2706-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-017-2706-x

Keywords

Navigation