Formulating and solving sustainable stochastic dynamic facility layout problem: a key to sustainable operations | Annals of Operations Research Skip to main content
Log in

Formulating and solving sustainable stochastic dynamic facility layout problem: a key to sustainable operations

  • Original Paper
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Facility layout design, a NP hard problem, is associated with the arrangement of facilities in a manufacturing shop floor, which impacts the performance, and cost of system. Efficient design of facility layout is a key to the sustainable operations in a manufacturing shop floor. An efficient layout design not only optimizes the cost and energy due to proficient handling but also increase flexibility and easy accessibility. Traditionally, it is solved using meta-heuristic techniques. But these algorithmic or procedural methodologies do not generate effective and efficient layout design from sustainable point of view, where design should consider multiple criteria such as demand fluctuations, material handling cost, accessibility, maintenance, waste and more. In this paper, to capture the sustainability in the layout design these parameters are considered, and a new sustainable stochastic dynamic facility layout problem (SDFLP) is formulated and solved. SDFLP is optimized for material handling cost and rearrangement cost using various meta-heuristic techniques. The pool of layouts thus generated are then analyzed by data envelopment analysis to identify efficient layouts. A novel hierarchical methodology of consensus ranking of layouts is proposed which combines the multiple attributes/criteria. Multi attribute decision-making techniques such as technique for order preference by similarity to ideal solution, interpretive ranking process and analytic hierarchy process, Borda–Kendall and integer linear programming based rank aggregation techniques are applied. To validate the proposed methodology data sets for facility size \(N=12\) for time period \(T=5\) having Gaussian demand are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Akash, T., & Singh, S. P. (2016). Integrating big data analytic and hybrid firefly-chaotic simulated annealing approach for facility layout problem. Annals of Operations Research. doi:10.1007/s10479-016-2237-x.

  • Albert, E. F. M., Manuel, I., Silvano, M., Marcos, J., & Negreiros, G. (2010). Models and algorithms for fair layout optimization problems. Annals of Operations Research, 179, 5–14.

    Article  Google Scholar 

  • Balakrishnan, J., & Cheng, C. H. (2007). Multi period planning and uncertainty issues in cellular manufacturing: A review and future directions. European Journal of Operation Research, 177, 281–309.

    Article  Google Scholar 

  • Balakrishnan, J., & Cheng, C. H. (2009). The dynamic plant layout problem: Incorporating rolling horizons and forecast uncertainty. Omega, 37(1), 165–177.

    Article  Google Scholar 

  • Balakrishnan, J., Jacobs, F. R., & Venkataramanan, M. A. (1992). Solution for the constrained dynamic facility layout problem. European Journal of Operation Research, 57, 280–286.

    Article  Google Scholar 

  • Bayraktar, E., Jothishankar, M. C., Tatoglu, E., & Wu, T. (2007). Evolution of operations management: Past, present and future. Management Research News, 30(11), 843–871.

    Article  Google Scholar 

  • Beck, M. P., & Lin, B. W. (1983). Some heuristics for the consensus ranking problem. Computers and Operations Research, 10(1), 1–7.

    Article  Google Scholar 

  • Borda, J. C., (1781). M’emoire sur les ’elections au scrutiny. Histoire de l’Acad’emie Royale des Sciences, Ann’ee MDCCLXXXI, Paris, France.

  • Bruglia, M., Zanoni, S., & Zavanella, L. (2004). Layout design in dynamic environments: Analytical issues. International Transition in Operation Research, 12, 1–19.

    Article  Google Scholar 

  • Bruglia, M., Zanoni, S., & Zavanella, L. (2005). Robust versus stable environments. Production Planning and Control, 16(1), 71–80.

    Article  Google Scholar 

  • Canen, A. G., & Williamson, G. H. (1998). Facility layout overview: Towards competitive advantage. Facilities, 16(7/8), 198–203.

    Article  Google Scholar 

  • Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2, 429–444.

    Article  Google Scholar 

  • Cook, W. D., & Kress, M. (1985). Ordinal ranking with intensity of preference. Management Science, 31(1), 26–32.

    Article  Google Scholar 

  • Cook, W. D., & Seiford, L. M. (1982). On the Borda–Kendall consensus method for priority ranking problems. Management Science, 28(6), 621–637.

    Article  Google Scholar 

  • Date, K., Makked, S., & Nagi, R. (2014). Dominance rules for the optimal placement of a finite-size facility in an existing layout. Computers and Operations Research, 51, 182–189.

    Article  Google Scholar 

  • Drake, D. F., & Spinler, S. (2013). OM forum-sustainable operations management: An enduring stream or a passing fancy? Manufacturing and Service Operations Management, 15(4), 689–700.

    Article  Google Scholar 

  • Dubey, R., Gunasekaran, A., & Childe, S. J. (2015). The design of a responsive sustainable supply chain network under uncertainty. The International Journal of Advanced Manufacturing Technology, 80(1–4), 427–445.

    Article  Google Scholar 

  • Dutta, K. N., & Sahu, S. (1982). A multi goal heuristic for facilities design problem: Mughal. International Journal of Production Research, 20, 147–154.

    Article  Google Scholar 

  • Elliott, B. (2001). Operations management: A key player in achieving a sustainable future. Management Services, 45(7), 14–19.

    Google Scholar 

  • Ertay, T., Ruan, D., & Tuzkaya, U. R. (2006). Integrating data envelopment analysis and analytic hierarchy for the facility layout design in manufacturing systems. Information Sciences, 176, 237–262.

    Article  Google Scholar 

  • Fortenberry, J. C., & Cox, J. F. (1985). Multiple criteria approach to the facilities layout problem. International Journal of Production Research, 23, 773–782.

    Article  Google Scholar 

  • Garcia-Hernandez, L., et al. (2013). Recycling plants layout design by means of an interactive genetic algorithm. Intelligent Automation and Soft Computing, 19(3), 457–468.

    Article  Google Scholar 

  • García-Hernández, L., et al. (2015). Facility layout design using a multi-objective interactive genetic algorithm to support the DM. Expert Systems, 32(1), 94–107.

    Article  Google Scholar 

  • Govindan, K., & Cheng, T. C. E. (2015). Sustainable supply chain management: Advances in operations research perspective. Computers and Operations Research, 54, 177–179.

    Article  Google Scholar 

  • Gupta, M. C. (1995). Environmental management and its impact on the operations function. International Journal of Operations and Production Management, 15(8), 34–51.

    Article  Google Scholar 

  • Gupta, M., & Sharma, K. (1996). Environmental operations management: An opportunity for improvement. Production and Inventory Management Journal, 37(3), 40–46.

    Google Scholar 

  • Hajek, B. (1988). Cooling schedules for optimal annealing. Mathematics of Operations Research, 3, 311–329.

    Article  Google Scholar 

  • Hwang, C. L., & Yoon, K. P. (1981). Multiple attribute decision making: Methods and applications. New York: Springer.

    Book  Google Scholar 

  • Kaur, H., Singh, S. P., & Glardon, R. (2017). An integer linear program for integrated supplier selection: A sustainable flexible framework. Global Journal of Flexible Systems Management, 17(2), 113–134.

    Article  Google Scholar 

  • Kendall, M. (1962). Rank correlation methods (3rd ed.). New York: Hafner.

    Google Scholar 

  • Khare, V. K., Khare, M. K., & Neema, M. L. (1988a). Estimation of distribution parameters associated with facilities design problem involving forward and backtracking of materials. Computers and Industrial Engineering, 14, 63–75.

    Article  Google Scholar 

  • Khare, V. K., Khare, M. K., & Neema, M. L. (1988b). Combined computer-aided approach for the facilies design problem and estimation of the distribution parameter in the case of multi goal optimization. Computers and Industrial Engineering, 14, 465–476.

    Article  Google Scholar 

  • Kia, R., Baboli, A., Javadian, N., Tavakkoli-Moghaddam, R., Kazemi, M., & Khorrami, J. (2012). Solving a group layout design model of a dynamic cellular manufacturing system with alternative process routings, lot splitting and flexible reconfiguration by simulated annealing. Computers and Operations Research, 39(11), 2642–2658.

    Article  Google Scholar 

  • Kirkpatrick, S., Gelatt, C. D, Jr., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220, 671–677.

    Article  Google Scholar 

  • Kleindorfer, P. R., & Kunreuther, H. C. (1994). Siting of hazardous facilities. Handbooks in operations research and management science, 6, 403–440.

    Article  Google Scholar 

  • Kleindorfer, P. R., Singhal, K., & Wassenhove, L. N. V. (2005). Sustainable operations management. Production and Operations Management, 14(4), 482–492.

    Article  Google Scholar 

  • Koopmans, T. C. S., & Beckman, M. (1957). Assignment problem and the location of economic activities. Econometric, 25, 53–76.

    Article  Google Scholar 

  • Kulturel-Konak, S. (2007). Approaches to uncertainties in facility layout problem: Perspectives at the beginning of the 21st century. Journal of Intelligent Manufacturing, 14(2), 219–228.

    Article  Google Scholar 

  • Kulturel-Konak, S., Smith, A. E., & Norman, B. A. (2004). Layout optimization considering production uncertainty and routing flexibility. International Journal of Production Research, 42(21), 4475–4493.

    Article  Google Scholar 

  • Kusiak, A., & Heragu, S. S. (1987). The facility layout problem. European Journal of operational research, 29(3), 229–251.

    Article  Google Scholar 

  • Lieckens, K. T., Colen, P. J., & Lambrecht, M. R. (2015). Network and contract optimization for maintenance services with remanufacturing. Computers and Operations Research, 54, 232–244.

    Article  Google Scholar 

  • Linton, J. D., Klassen, R., & Jayaraman, V. (2007). Sustainable supply chains: An introduction. Journal of Operations Management, 25(6), 1075–1082.

    Article  Google Scholar 

  • Les, R. F., & Fariborz, Y. P. (1998). Integrating the analytic hierarchy process and graph theory to model facilities layout. Annals of Operations Research, 82, 435–451.

    Article  Google Scholar 

  • Malakooti, B. (1989). Multiple objective facility layout: A heuristic to generate efficient alternatives. International Journal of Production Research, 27(7), 1225–1238.

    Article  Google Scholar 

  • Matai, R. (2015). Solving multi objective facility layout problem using modified simulated annealing. Applied Mathematics and Computation, 261, 302–311.

    Article  Google Scholar 

  • Matai, R., Singh, S. P., & Mittal, M. L. (2013a). A non-greedy systematic neighbourhood search heuristic for solving facility layout problem. International Journal of Advanced Manufacturing Technology, 68, 1665–1675.

    Article  Google Scholar 

  • Matai, R., Singh, S. P., & Mittal, M. L. (2013b). Modified simulated annealing based approach for multi objective facility layout problem. International Journal of Production Research, 51(14), 4273–4288.

    Article  Google Scholar 

  • Matai, R., Singh, S. P., & Mittal, M. L. (2013c). A new heuristic for solving facility layout problem. International Journal of Advance Operations Management, 5(2), 137–158.

    Article  Google Scholar 

  • McKendall, A. R., Shang, J., & Kuppusamy, S. (2006). Simulated annealing heuristics for the dynamic facility layout problem. Computers and Operations Research, 33(8), 2431–2444.

    Article  Google Scholar 

  • Moslemipour, G., & Lee, T. S. (2011). Intelligent design of a dynamic machine layout in uncertain environment of flexible manufacturing systems. Journal of Intelligent Manufacturing, 23(5), 1849–1860.

    Article  Google Scholar 

  • Moslemipour, G., Lee, T. S., & Rilling, D. (2012). A review of intelligent approaches for designing dynamic and robust layout in flexible manufacturing systems. The International Journal of Advanced Manufacturing Technology, 60(1–4), 11–27.

    Article  Google Scholar 

  • Nunes, B., & Bennett, D. (2010). Green operations initiatives in the automotive industry: An environmental reports analysis and benchmarking study. Benchmarking: An International Journal, 17(3), 396–420.

    Google Scholar 

  • O’brien, C., & Abdel Barr, S. E. Z. (1980). An interactive approach to computer aided facility layout. International Journal of Production Research, 18(2), 201–211.

  • Rosenblatt, M. J. (1979). The facilities layout problem: A multi goal approach. International Journal of Production Research, 17, 323–332.

    Article  Google Scholar 

  • Rosenblatt, M. J., & Kropp, D. H. (1992). The single period stochastic plan layout problem. IIE Transactions, 24(2), 169–176.

    Article  Google Scholar 

  • Rosenblatt, M. J., & Lee, H. L. (1987). A robustness approach to facilities design. International journal of production research, 25(4), 479–486.

    Article  Google Scholar 

  • Saaty, T. L. (1980). The analytic hierarchy process. New York: McGraw-Hill.

    Google Scholar 

  • Sacaluga, A. M. M., & Froján, J. E. P. (2014). Best practices in sustainable supply chain management: A literature review. In C. Hernandez Iglesias & J. M. Perez Rios (Eds.), Managing complexity (pp. 209–216). Valladolid: University of Valladolid.

  • Sarkis, J. (2001). Introduction. Greener manufacturing and operations: From design to deliveryand back (pp. 15–21). Sheffield: Greenleaf Publishing.

    Chapter  Google Scholar 

  • Singh, S. P., & Sharma, R. R. K. (2006). A review of different approaches to the facility layout problem. The International Journal of Advanced Manufacturing Technology, 30(5–6), 425–433.

    Article  Google Scholar 

  • Sinuany-Stern, Z., Mehrez, A., & Hadad, Y. (2000). An AHP/DEA methodology for ranking decision making units. International Transactions in Operational Research, 7, 109–124.

    Article  Google Scholar 

  • Subramoniam, R., Huisingh, D., & Chinnam, R. B. (2009). Remanufacturing for the automotive aftermarket-strategic factors: Literature review and future research needs. Journal of Cleaner Production, 17(13), 1163–1174.

    Article  Google Scholar 

  • Sushil, (2009). Interpretive ranking process. Global Journal of Flexible Systems Management, 10(4), 1–10.

    Google Scholar 

  • Tavana, M., LoPinto, F., & Smither, J.W., (2007). A hybrid distance—based ideal—seeking consensus ranking model. Journal of applied Mathematics and Decision Sciences, Article ID 20489, p. 18.

  • Tayal, A., & Singh, S. P. (2014). Chaotic simulated annealing for solving stochastic dynamic facility layout problem. Journal of International Management Studies, 14(2), 67–74.

    Article  Google Scholar 

  • Tayal, A., & Singh, S. P., (2015). Integrated SA–DEA–TOPSIS based solution approach for multi objective stochastic dynamic facility layout problem. International Journal of Business and Systems Research.

  • Tayal, A., & Singh, S. P. (2016a). Analysis of simulated annealing cooling schemas for design of optimal flexible layout under uncertain dynamic product demand. International Journal of Operation Research.

  • Tayal, A., & Singh, S. P. (2016b). Flexible layout design for uncertain product demand by integrating firefly and chaotic simulated annealing approach. Global Journal of Flexible Systems Management.

  • Tayal, A., & Singh, S. P. (2016c). Analyzing the effect of chaos functions in solving stochastic dynamic facility layout problem using CSA. In Advanced computing and communication technologies (pp. 99–108). Singapore: Springer.

  • Timothy, L. U. (1998). Solution procedures for the dynamic facility layout problem. Annals of Operations Research, 76, 323–342.

    Article  Google Scholar 

  • Tompkins, J. A., White, J. A., Bozer, Y. A., Frazelle, E. H., Tanchoco, J. M. A., & Trevino, J. (1996). Facilities planning (2nd ed., pp. 36–47). Wiley.

  • Tompkins, J. A., White, J. A., Bozer, Y. A., & Tanchoco, J. M. A. (2003) . Facilities planning. Willey.

  • Yang, L., Deuse, J., & Jiang, P. (2013). Multiple-attribute decision-making approach for an energy-efficient facility layout design. The International Journal of Advanced Manufacturing Technology, 66(5), 795–807.

    Article  Google Scholar 

  • Yang, T., & Hung, C. C. (2007). Multiple-attribute decision making methods for plant layout design problem. Robot Computer-Integrated Manufacturing, 23, 126–137.

    Article  Google Scholar 

  • Yang, T., & Kuo, C. (2003). A hierarchical AHP/DEA methodology for the facilities layout design problem. European Journal OperationResearch, 147, 128–136.

    Article  Google Scholar 

  • Yu, W., & Ramanathan, R. (2015). An empirical examination of stakeholder pressures, green operations practices and environmental performance. International Journal of Production Research, 1–18 (ahead-of-print). doi:10.1080/00207543.2014.931608.

  • Zouein, P. P., & Tommelein, I. D. (1999). Dynamic layout planning using a hybrid incremental solution method. Journal of construction engineering and management, 125(6), 400–408.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the constructive and helpful comments on the previous version of the manuscript which helped to improve the presentation of the paper considerably.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angappa Gunasekaran.

Appendices

Appendix 1

See Tables 1314 and 15.

Table 13 Adjacency matrix for the facilities
Table 14 Separation matrix for the facilities
Table 15 Waste flow matrix for the facilities

Appendix 2

Tables 1617181920212223 and 24 gives the assignment of twelve facilities (\(\hbox {N}=12\)) for five time periods (\(\hbox {T}=5\)) for nine efficient layouts obtained from Step 2 (Identify efficient SDFLP layouts using DEA) on which the MADM techniques were applied for ranking. The layout is represented as a 2-D matrix where row is the time period and the column is the location, and each cell is the machine number i.e. the machine ‘i’ placed at the location ‘l’ for the time period ‘t’.

Table 16 Layout 1
Table 17 Layout 2
Table 18 Layout 4
Table 19 Layout 5
Table 20 Layout 7
Table 21 Layout 14
Table 22 Layout 20
Table 23 Layout 23
Table 24 Layout 29

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tayal, A., Gunasekaran, A., Singh, S.P. et al. Formulating and solving sustainable stochastic dynamic facility layout problem: a key to sustainable operations. Ann Oper Res 253, 621–655 (2017). https://doi.org/10.1007/s10479-016-2351-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-016-2351-9

Keywords

Navigation