Selection of optimum maintenance strategy based on FAHP integrated with GRA–TOPSIS | Annals of Operations Research Skip to main content
Log in

Selection of optimum maintenance strategy based on FAHP integrated with GRA–TOPSIS

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

In today’s competitive environment, industries are required to increase reliability and safety level of their equipment with reasonable cost. Consequently, it is essential to select the appropriate maintenance strategy. In the paper industry, pumping of cooked pulp requires abrasion- and sometimes corrosion-resistant pumps that are able to handle up to 70 % solids content. But the maintenance engineer and supervisor often face failures of the pump. Hence, this article describes the application of multi criteria decision-making (MCDM) technique for the selection of optimum maintenance strategy for pumps used in the paper industry. The proposed hybrid MCDM model comprises fuzzy analytical hierarchy process (FAHP), grey relational analysis (GRA), and technique for order preference by similarity to ideal solution (TOPSIS) technique. The FAHP is used to compute the criteria weights whereas GRA–TOPSIS is used for determining the ranking of alternatives. This study discusses four maintenance strategies: corrective maintenance, predictive maintenance, time-based preventive maintenance, and condition-based maintenance. Four main criteria—safety, cost, added value, and feasibility—have been used to evaluate the optimum maintenance strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aghaee, M., & Fazli, S. (2012). An improved MCDM method for maintenance approach selection: A case study of auto industry. Management Science Letters, 2(1), 137–146.

    Article  Google Scholar 

  • Albayrak, E., & Erensal, Y. (2004). Using analytic hierarchy process (AHP) to improve human performance: An application of multiple criteria decision making problem. Journal of Intelligent Manufacturing, 15(4), 491–503. doi:10.1023/B:JIMS.0000034112.00652.4c

  • Alemi, M., Jalalifar, H., Kamali, G., & Kalbasi, M. (2010). A prediction to the best artificial lift method selection on the basis of TOPSIS model. Journal of Petroleum and Gas Engineering, 1(1), 009–015.

    Google Scholar 

  • Al-Najjar, B., & Alsyouf, I. (2003). Selecting the most efficient maintenance approach using fuzzy multiple criteria decision making. International Journal of Production Economics, 84(1), 85–100. doi:10.1016/S0925-5273(02)00380-8

  • Arunraj, N. S., & Maiti, J. (2010). Risk-based maintenance policy selection using AHP and goal programming. Safety Science, 48(2), 238–247. doi:10.1016/j.ssci.2009.09.005

  • Ayağ, Z., & Özdemir, R. G. (2006). A fuzzy AHP approach to evaluating machine tool alternatives. Journal of Intelligent Manufacturing, 17(2), 179–190. doi:10.1007/s10845-005-6635-1

  • Azadeh, A., Sheikhalishahi, M., Firoozi, M., & Khalili, S. M. (2013). An integrated multi-criteria Taguchi computer simulation-DEA approach for optimum maintenance policy and planning by incorporating learning effects. International Journal of Production Research, 51(18), 5374–5385. doi:10.1080/00207543.2013.774496

  • Bashiri, M., Badri, H., & Hejazi, T. H. (2011). Selecting optimum maintenance strategy by fuzzy interactive linear assignment method. Applied Mathematical Modelling, 35(1), 152–164. doi:10.1016/j.apm.2010.05.014

  • Bellman, R. E., & Zadeh, L. A. (1970). Decision-making in a fuzzy environment. Management Science, 17(4), B141–B164. doi:10.1287/mnsc.17.4.B141

  • Bertolini, M., & Bevilacqua, M. (2006). A combined goal programming—AHP approach to maintenance selection problem. Reliability Engineering & System Safety, 91(7), 839–848. doi:10.1016/j.ress.2005.08.006

  • Bevilacqua, M., & Braglia, M. (2000). The analytic hierarchy process applied to maintenance strategy selection. Reliability Engineering & System Safety, 70(1), 71–83. doi:10.1016/S0951-8320(00)00047-8

  • Braglia, M., Castellano, D., & Frosolini, M. (2013). An integer linear programming approach to maintenance strategies selection. International Journal of Quality & Reliability Management, 30(9), 991–1016. doi:10.1108/IJQRM-05-2012-0059

  • Buckley, J. J. (1985). Fuzzy hierarchical analysis. Fuzzy Sets and Systems, 17(3), 233–247. doi:10.1016/0165-0114(85)90090-9

  • Büyüközkan, G., Kahraman, C., & Ruan, D. (2004). A fuzzy multi-criteria decision approach for software development strategy selection. International Journal of General Systems, 33(2–3), 259–280. doi:10.1080/03081070310001633581

  • Chan, F. T. S., & Kumar, N. (2007). Global supplier development considering risk factors using fuzzy extended AHP-based approach. Omega, 35(4), 417–431. doi:10.1016/j.omega.2005.08.004

  • Chan, F. T. S., Kumar, N., Tiwari, M. K., Lau, H. C. W., & Choy, K. L. (2008). Global supplier selection: A fuzzy-AHP approach. International Journal of Production Research, 46(14), 3825–3857. doi:10.1080/00207540600787200

  • Chang, Y.-H., Cheng, C., & Wang, T.-C. (2003). Performance evaluation of international airports in the region of east Asia. In Proceedings of Eastern Asia Society for transportation studies, 2003 (Vol. 4, pp. 213–230).

  • Chareonsuk, C., Nagarur, N., & Tabucanon, M. T. (1997). A multicriteria approach to the selection of preventive maintenance intervals. International Journal of Production Economics, 49(1), 55–64. doi:10.1016/S0925-5273(96)00113-2

  • Chen, M.-F., & Tzeng, G.-H. (2004). Combining grey relation and TOPSIS concepts for selecting an expatriate host country. Mathematical and Computer Modelling, 40(13), 1473–1490. doi:10.1016/j.mcm.2005.01.006

  • Cheng, C.-H., Yang, K.-L., & Hwang, C.-L. (1999). Evaluating attack helicopters by AHP based on linguistic variable weight. European Journal of Operational Research, 116(2), 423–435. doi:10.1016/S0377-2217(98)00156-8

  • Chou, T.-Y., & Liang, G.-S. (2001). Application of a fuzzy multi-criteria decision-making model for shipping company performance evaluation. Maritime Policy & Management, 28(4), 375–392. doi:10.1080/03088830110049951

  • Dai, J., Qi, J., Chi, J., Chen, S., Yang, J., Ju, L., et al. (2010). Integrated water resource security evaluation of Beijing based on GRA and TOPSIS. Frontiers of Earth Science in China, 4(3), 357–362. doi:10.1007/s11707-010-0120-7

  • de Almeida, A. T., & Bohoris, G. A. (1995). Decision theory in maintenance decision making. Journal of Quality in Maintenance Engineering, 1(1), 39–45. doi:10.1108/13552519510083138

  • de Melo Brito, A. J., de Almeida Filho, A. T., & de Almeida, A. T. (2010). Multi-criteria decision model for selecting repair contracts by applying utility theory and variable interdependent parameters. IMA Journal of Management Mathematics, 21(4), 349–361. doi:10.1093/imaman/dpn014

  • Deng, H. (1999). Multicriteria analysis with fuzzy pairwise comparison. International Journal of Approximate Reasoning, 21(3), 215–231. doi:10.1016/S0888-613X(99)00025-0

  • Deng, J.-L. (1989). Introduction to grey system theory. The Journal of Grey System, 1(1), 1–24.

    Google Scholar 

  • Ding, J.-F., & Liang, G.-S. (2005). Using fuzzy MCDM to select partners of strategic alliances for liner shipping. Information Sciences, 173(1–3), 197–225. doi:10.1016/j.ins.2004.07.013

  • Ding, S.-H., Kamaruddin, S., & Azid, I. A. (2014). Maintenance policy selection model—A case study in the palm oil industry. Journal of Manufacturing Technology Management, 25(3), 415–435. doi:10.1108/JMTM-03-2012-0032

  • Djurdjanovic, D., Lee, J., & Ni, J. (2003). Watchdog agent—An infotronics-based prognostics approach for product performance degradation assessment and prediction. Advanced Engineering Informatics, 17(3–4), 109–125. doi:10.1016/j.aei.2004.07.005

  • Durán, O. (2011). Computer-aided maintenance management systems selection based on a fuzzy AHP approach. Advances in Engineering Software, 42(10), 821–829. doi:10.1016/j.advengsoft.2011.05.023

  • Ertuğrul, İ., & Karakaşoğlu, N. (2009). Performance evaluation of Turkish cement firms with fuzzy analytic hierarchy process and TOPSIS methods. Expert Systems with Applications, 36(1), 702–715. doi:10.1016/j.eswa.2007.10.014

  • Ertuğrul, İ., & Tuş, A. (2007). Interactive fuzzy linear programming and an application sample at a textile firm. Fuzzy Optimization and Decision Making, 6(1), 29–49. doi:10.1007/s10700-006-0023-y

  • Faccio, M., Persona, A., Sgarbossa, F., & Zanin, G. (2014). Industrial maintenance policy development: A quantitative framework. International Journal of Production Economics, 147(Part A(0)), 85–93. doi:10.1016/j.ijpe.2012.08.018

  • Faghihinia, E., & Mollaverdi, N. (2012). Building a maintenance policy through a multi-criterion decision-making model. Journal of Industrial Engineering International, 8(1), 1–15. doi:10.1186/2251-712X-8-14

  • Feng, C.-M., & Wang, R.-T. (2000). Performance evaluation for airlines including the consideration of financial ratios. Journal of Air Transport Management, 6(3), 133–142. doi:10.1016/S0969-6997(00)00003-X

  • Ferreira, R. J. P., de Almeida, A. T., & Cavalcante, C. A. V. (2009). A multi-criteria decision model to determine inspection intervals of condition monitoring based on delay time analysis. Reliability Engineering & System Safety, 94(5), 905–912. doi:10.1016/j.ress.2008.10.001

  • Fu, C., Zheng, J., Zhao, J., & Xu, W. (2001). Application of grey relational analysis for corrosion failure of oil tubes. Corrosion Science, 43(5), 881–889. doi:10.1016/S0010-938X(00)00089-5

  • Ho, W., Xu, X., & Dey, P. K. (2010). Multi-criteria decision making approaches for supplier evaluation and selection: A literature review. European Journal of Operational Research, 202(1), 16–24. doi:10.1016/j.ejor.2009.05.009

  • Hsieh, T.-Y., Lu, S.-T., & Tzeng, G.-H. (2004). Fuzzy MCDM approach for planning and design tenders selection in public office buildings. International Journal of Project Management, 22(7), 573–584. doi:10.1016/j.ijproman.2004.01.002

  • Hsu, L.-C., & Wang, C.-H. (2009). Forecasting integrated circuit output using multivariate grey model and grey relational analysis. Expert Systems with Applications, 36(2, Part 1), 1403–1409. doi:10.1016/j.eswa.2007.11.015

  • Huang, C.-C., Chu, P.-Y., & Chiang, Y.-H. (2008). A fuzzy AHP application in government-sponsored R&D project selection. Omega, 36(6), 1038–1052. doi:10.1016/j.omega.2006.05.003

  • Hwang, H. S., & Ko, W.-H. (2003). A restaurant planning model based on fuzzy-AHP method. In ISAHP 2005, Honolulu, Hawaii.

  • Hwang, C., & Yoon, K. (1981). Multiple attribute decision making: Methods and applications, a State of the art survey. New York, NY: Sprinnger.

    Book  Google Scholar 

  • Hwang, H. J., & Hwang, H. S. (2006). Computer-aided fuzzy-AHP decision model and its application to school food service problem. International Journal of Innovative Computing, Information and Control, 2(1), 125–137.

    Google Scholar 

  • Ilangkumaran, M., & Kumanan, S. (2009). Selection of maintenance policy for textile industry using hybrid multi-criteria decision making approach. Journal of Manufacturing Technology Management, 20(7), 1009–1022. doi:10.1108/17410380910984258

  • Ilangkumaran, M., & Kumanan, S. (2012). Application of hybrid VIKOR model in selection of maintenance strategy. International Journal of Information Systems and Supply Chain Management (IJISSCM), 5(2), 59–81. doi:10.4018/jisscm.2012040104

  • Ilangkumaran, M., & Thamizhselvan, P. (2010). Integrated hazard and operability study using fuzzy linguistics approach in petrochemical industry. International Journal of Quality & Reliability Management, 27(5), 541–557. doi:10.1108/02656711011043526

  • Ishizaka, A., & Nemery, P. (2014). Assigning machines to incomparable maintenance strategies with ELECTRE-SORT. Omega, 47, 45–59. doi:10.1016/j.omega.2014.03.006

  • Khajeh, M. (2010). Water conservation in Kuwait: A fuzzy analysis approach. Journal of Industrial Engineering International, 6(10), 90–105.

    Google Scholar 

  • Khoram, M. R., Shariat, M., Azar, A., Moharamnejad, N., & Mahjub, H. (2007). Prioritizing the strategies and methods of treated wastewater reusing by fuzzy analytic hierarchy process (FAHP): A case study. International Journal of Agriculture & Biology, 9(2–3), 19–23.

    Google Scholar 

  • Khorasani, O., & Bafruei, M. K. (2011). A fuzzy AHP approach for evaluating and selecting supplier in pharmaceutical industry. International Journal of Academic Research, 3(1), 346–352.

    Google Scholar 

  • Kulak, O., Durmuşoğlu, M. B., & Kahraman, C. (2005). Fuzzy multi-attribute equipment selection based on information axiom. Journal of Materials Processing Technology, 169(3), 337–345. doi:10.1016/j.jmatprotec.2005.03.030

  • Kumar, A., & Agrawal, V. P. (2009). Attribute based specification, comparison and selection of electroplating system using MADM approach. Expert Systems with Applications, 36(8), 10815–10827. doi:10.1016/j.eswa.2008.06.141

  • Kumar, G., & Maiti, J. (2012). Modeling risk based maintenance using fuzzy analytic network process. Expert Systems with Applications, 39(11), 9946–9954. doi:10.1016/j.eswa.2012.01.004

  • Kuo, M.-S., Wu, J.-W., & Pei, L. (2007). A soft computing method for selecting evaluation criteria of service quality. Applied Mathematics and Computation, 189(1), 241–254. doi:10.1016/j.amc.2006.11.084

  • Labib, A. W. (1998). World-class maintenance using a computerised maintenance management system. Journal of Quality in Maintenance Engineering, 4(1), 66–75. doi:10.1108/13552519810207470

  • Lai, H.-H., Lin, Y.-C., & Yeh, C.-H. (2005). Form design of product image using grey relational analysis and neural network models. Computers & Operations Research, 32(10), 2689–2711. doi:10.1016/j.cor.2004.03.021

  • Lin, C.-H. (2008). Frequency-domain features for ECG beat discrimination using grey relational analysis-based classifier. Computers & Mathematics with Applications, 55(4), 680–690. doi:10.1016/j.camwa.2007.04.035

  • Lin, J. L., & Lin, C. L. (2002). The use of the orthogonal array with grey relational analysis to optimize the electrical discharge machining process with multiple performance characteristics. International Journal of Machine Tools and Manufacture, 42(2), 237–244. doi:10.1016/S0890-6955(01)00107-9

  • Lin, S.-C., Liang, G.-S., & Lee, K.-L. (2006). Applying fuzzy analytic hierarchy process in location mode of international logistics on airports competition evaluation. Journal of Marine Science and Technology, 14(1), 25–38.

    Google Scholar 

  • Luce, S. (1999). Choice criteria in conditional preventive maintenance. Mechanical Systems and Signal Processing, 13(1), 163–168. doi:10.1006/mssp.1998.0176

  • Mechefske, C. K., & Wang, Z. (2003). Using fuzzy linguistics to select optimum maintenance and condition monitoring strategies. Mechanical Systems and Signal Processing, 17(2), 305–316. doi:10.1006/mssp.2001.1395

  • Mikhailov, L. (2003). Deriving priorities from fuzzy pairwise comparison judgements. Fuzzy Sets and Systems, 134(3), 365–385. doi:10.1016/S0165-0114(02)00383-4

  • Nezami, F. G., & Yildirim, M. B. (2013). A sustainability approach for selecting maintenance strategy. International Journal of Sustainable Engineering, 6(4), 332–343. doi:10.1080/19397038.2013.765928

  • Önüt, S., & Soner, S. (2008). Transshipment site selection using the AHP and TOPSIS approaches under fuzzy environment. Waste Management, 28(9), 1552–1559. doi:10.1016/j.wasman.2007.05.019

  • Peiyue, L., Hui, Q., & Jianhua, W. (2011). Hydrochemical formation mechanisms and quality assessment of groundwater with improved TOPSIS method in Pengyang County Northwest China. E-Journal of Chemistry, 8(3). doi:10.1155/2011/251918

  • Pourjavad, E., & Shirouyehzad, H. (2014). Analysing maintenance strategies by FANP considering RAM criteria: A case study. International Journal of Logistics Systems and Management, 18(3), 302–321. doi:10.1504/IJLSM.2014.062818

  • Pourjavad, E., Shirouyehzad, H., & Shahin, A. (2013). Selecting maintenance strategy in mining industry by analytic network process and TOPSIS. International Journal of Industrial and Systems Engineering, 15(2), 171–192. doi:10.1504/IJISE.2013.056095

  • Rouhani, S., Ghazanfari, M., & Jafari, M. (2012). Evaluation model of business intelligence for enterprise systems using fuzzy TOPSIS. Expert Systems with Applications, 39(3), 3764–3771. doi:10.1016/j.eswa.2011.09.074

  • Saaty, T. L. (1980). The Analytic Hierarchy Process. New York: McGraw-Hill.

    Google Scholar 

  • Sanayei, A., Farid Mousavi, S., & Yazdankhah, A. (2010). Group decision making process for supplier selection with VIKOR under fuzzy environment. Expert Systems with Applications, 37(1), 24–30. doi:10.1016/j.eswa.2009.04.063

  • Sasmal, S., & Ramanjaneyulu, K. (2008). Condition evaluation of existing reinforced concrete bridges using fuzzy based analytic hierarchy approach. Expert Systems with Applications, 35(3), 1430–1443. doi:10.1016/j.eswa.2007.08.017

  • Sezhian, M. V., Muralidharan, C., Nambirajan, T., & Deshmukh, S. (2011). Performance measurement in a public sector passenger bus transport company using fuzzy TOPSIS, fuzzy AHP and ANOVA—A case study. International Journal of Engineering Science and Technology (IJEST), 3(2), 1046–1059.

    Google Scholar 

  • Shamsuzzaman, M., Ullah, A. M. M. S., & Bohez, E. L. J. (2003). Applying linguistic criteria in FMS selection: Fuzzy-set-AHP approach. Integrated Manufacturing Systems, 14(3), 247–254. doi:10.1108/09576060310463190

  • Shanian, A., & Savadogo, O. (2006). TOPSIS multiple-criteria decision support analysis for material selection of metallic bipolar plates for polymer electrolyte fuel cell. Journal of Power Sources, 159(2), 1095–1104. doi:10.1016/j.jpowsour.2005.12.092

  • Sharma, R. K., Kumar, D., & Kumar, P. (2005). FLM to select suitable maintenance strategy in process industries using MISO model. Journal of Quality in Maintenance Engineering, 11(4), 359–374. doi:10.1108/13552510510626981

  • Shyjith, K., Ilangkumaran, M., & Kumanan, S. (2008). Multi-criteria decision-making approach to evaluate optimum maintenance strategy in textile industry. Journal of Quality in Maintenance Engineering, 14(4), 375–386. doi:10.1108/13552510810909975

  • Tan, Z., Li, J., Wu, Z., Zheng, J., & He, W. (2011). An evaluation of maintenance strategy using risk based inspection. Safety Science, 49(6), 852–860. doi:10.1016/j.ssci.2011.01.015

  • Triantaphyllou, E., Kovalerchuk, B., Mann, L., & Knapp, G. M. (1997). Determining the most important criteria in maintenance decision making. Journal of Quality in Maintenance Engineering, 3(1), 16–28. doi:10.1108/13552519710161517

  • Tsaur, S.-H., Chang, T.-Y., & Yen, C.-H. (2002). The evaluation of airline service quality by fuzzy MCDM. Tourism Management, 23(2), 107–115. doi:10.1016/S0261-5177(01)00050-4

  • Tzeng, G.-H., & Huang, C.-Y. (2012). Combined DEMATEL technique with hybrid MCDM methods for creating the aspired intelligent global manufacturing and logistics systems. Annals of Operations Research, 197(1), 159–190. doi:10.1007/s10479-010-0829-4

  • Tzeng, G.-H., & Tasur, S. (1994). The multiple criteria evaluation of grey relation model. The Journal of Grey System, 6(2), 87–108.

    Google Scholar 

  • Van Laarhoven, P. J. M., & Pedrycz, W. (1983). A fuzzy extension of Saaty’s priority theory. Fuzzy Sets and Systems, 11(1–3), 199–227. doi:10.1016/S0165-0114(83)80082-7

  • Virgínio Cavalcante, C. A., Pires Ferreira, R. J., & de Almeida, A. T. (2010). A preventive maintenance decision model based on multicriteria method PROMETHEE II integrated with Bayesian approach. IMA Journal of Management Mathematics, 21(4), 333–348. doi:10.1093/imaman/dpn017

  • Waeyenbergh, G., & Pintelon, L. (2002). A framework for maintenance concept development. International Journal of Production Economics, 77(3), 299–313. doi:10.1016/S0925-5273(01)00156-6

  • Wang, T.-C., & Chang, T.-H. (2007). Application of TOPSIS in evaluating initial training aircraft under a fuzzy environment. Expert Systems with Applications, 33(4), 870–880. doi:10.1016/j.eswa.2006.07.003

  • Wang, Y.-M., & Elhag, T. M. S. (2006). Fuzzy TOPSIS method based on alpha level sets with an application to bridge risk assessment. Expert Systems with Applications, 31(2), 309–319. doi:10.1016/j.eswa.2005.09.040

  • Wang, L., Chu, J., & Wu, J. (2007). Selection of optimum maintenance strategies based on a fuzzy analytic hierarchy process. International Journal of Production Economics, 107(1), 151–163. doi:10.1016/j.ijpe.2006.08.005

  • Xu, G., Tian, W., Qian, L., & Zhang, X. (2007). A novel conflict reassignment method based on grey relational analysis (GRA). Pattern Recognition Letters, 28(15), 2080–2087. doi:10.1016/j.patrec.2007.06.004

  • Yeh, C.-H., Deng, H., & Chang, Y.-H. (2000). Fuzzy multicriteria analysis for performance evaluation of bus companies. European Journal of Operational Research, 126(3), 459–473. doi:10.1016/S0377-2217(99)00315-X

  • Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353. doi:10.1016/S0019-9958(65)90241-X

  • Zaim, S., Turkyilmaz, A., Acar, M. F., Al-Turki, U., & Demirel, O. F. (2012). Maintenance strategy selection using AHP and ANP algorithms: A case study. Journal of Quality in Maintenance Engineering, 18(1), 16–29. doi:10.1108/13552511211226166

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Kirubakaran.

Appendices

Appendix 1

1.1 Questionnaire

Read the following questions and put check marks on the pair wise comparison matrices. If a criterion on the left is more important than the matching one on the right, put the check mark to the left of the importance ‘Equal’ under the importance level. If a criterion on the left is less important than the matching one on the right, put your check mark to the right of the importance ‘Equal’ under the importance level.

1.2 Criteria

With respect to safety

  • Q1 How important is the safety (C1) when it is compared with cost (C2)?

  • Q2 How important is the safety (C1) when it is compared with added value (C3)?

  • Q3 How important is the safety (C1) when it is compared with feasibility (C4)?

With respect to cost

  • Q4 How important is the cost (C2) when it is compared with added value (C3)?

  • Q5 How important is the cost (C2) when it is compared with feasibility (C4)?

With respect to added value

  • Q6 How important is the added value (C3) when it is compared with feasibility (C4)?

1.3 Subcriteria

1.3.1 Safety

With respect to personnel

  • Q7 How important is the personnel (SC1) when it is compared with facilities (SC2)?

  • Q8 How important is the personnel (SC1) when it is compared with environment (SC3)?

With respect to facilities

  • Q9 How important is the facilities (SC2) when it is compared with environment (SC3)?

1.4 Cost

With respect to spare part inventories

  • Q10 How important is the spare part inventories (SC1) when it is compared with production loss (SC2)?

  • Q11 How important is the spare part inventories (SC1) when it is compared with fault identification (SC3)?

With respect to production loss

  • Q12 How important is the production loss (SC2) when it is compared with fault identification (SC3)?

1.5 Added value subcriteria

With respect to Hardware

  • Q13 How important is the Hardware (SC1) when it is compared with Software (SC2)?

  • Q14 How important is the Hardware (SC1) when it is compared with personnel training (SC3)?

  • Q15 How important is the Hardware (SC1) when it is compared with Replacement (SC4)?

With respect to Software

  • Q16 How important is the Software (SC2) when it is compared with personnel training (SC3)?

  • Q17 How important is the Software (SC2) when it is compared with Replacement (SC4)?

With respect to personnel training

  • Q18 How important is the personnel training (SC3) when it is compared with Replacement (SC4)?

1.6 Feasibility subcriteria

With respect to Acceptance by labor

  • Q19 How important is the Acceptance by labor (SC1) when it is compared with Technique reliability (SC2)?

  • Q20 How important is the Acceptance by labor (SC1) when it is compared with procedure (SC3)?

  • Q21 How important is the Acceptance by labor (SC1) when it is compared with Maintainability (SC4)?

With respect to Technique reliability

  • Q22 How important is the Technique reliability (SC2) when it is compared with procedure (SC3)?

  • Q23 How important is the Technique reliability (SC2) when it is compared with Maintainability (SC4)?

With respect to procedure

  • Q24 How important is the procedure (SC3) when it is compared with Maintainability (SC4)?

Appendix 2

1.1 Methodology for TOPSIS

TOPSIS was developed by Hwang and Yoon (1981). The procedure of TOPSIS method as follows:

Step 1: Determine the normalized decision matrix: The purpose of normalizing the performance matrix is to unify the unit of matrix entries. The determination of normalized values of alternatives \(x_{ij} \) is the numerical score of alternative \(j\) on criterion n. The corresponding normalized value \(r_{ij} \) is defined as follows.

$$\begin{aligned} r_{ij} =\frac{f_{ij} }{\sqrt{\sum \nolimits _{j=1}^J f_{ij}^2 }}j=1,2,3,\ldots , J, \quad i=1,2,3,\ldots ,n \end{aligned}$$

Step 2: Calculate the weighted normalized decision matrix. The weighted normalized value \(v_{ij} \) is calculated as:

$$\begin{aligned} v_{ij} =w_i *r_{ij} j=1,2,3,\ldots ,J, \quad i=1,2,3,\ldots ,n, \end{aligned}$$

where \(\hbox {w}_\mathrm{i} \) is the weight of the \(\hbox {i}^{\mathrm{th}}\) attribute or criterion.

Step 3: The ideal and negative ideal solutions of maintenance alternatives: The ideal solution \(\left( {A^{+}} \right) \) is defined as the best performance score result of all alternatives on a criterion. On contrary, the negative ideal solution is \(\left( {\hbox {A}^{-}} \right) \) is determined as the worst performance score result across all alternatives on a criterion.

$$\begin{aligned} A^{+}=\left\{ {\hbox {A}_1^+ ,\ldots ,\hbox {A}_\mathrm{n}^+ } \right\} =\left\{ {\left( {\max \limits _j v_{\mathrm{ij}} |\hbox {i}\in \hbox {I}^{{\prime }}} \right) ,\left( {\mathop {\min }\limits _j v_{\mathrm{ij}} |\hbox {i}\in \hbox {I}^{\prime \prime }} \right) } \right\} \\ A^{-}=\left\{ {\hbox {A}_1^{-} ,\ldots ,\hbox {A}_\mathrm{n}^{-} } \right\} =\left\{ {\left( {\mathop {\min }\limits _j v_{\mathrm{ij}} |\hbox {i}\in \hbox {I}^{{\prime }}} \right) ,\left( {\mathop {\max }\limits _j v_{\mathrm{ij}} |\hbox {i}\in \hbox {I}^{\prime \prime }} \right) } \right\} \end{aligned}$$

Where \(I^{{{\prime }}}\) a set of is benefit attributes (large value means better performance) and \(I^{{{\prime }{\prime }}}\) is a set of cost attributes (smaller value means better performance).

Step 4: Separation of each maintenance alternative for the ideal and negative ideal solution

After determining the ideal solution and negative ideal solution, the distance between the two solutions for each alternative are given as

$$\begin{aligned} D_j +=\sqrt{\sum _{i=1}^n {(v_{ij} -v_i^+ } )^{2}},\quad \hbox {j} = 1,2,3,{\ldots },\hbox {J}.\\ D_j^- =\sqrt{\sum _{i=1}^n {(v_{ij} -v_i^- } )^{2}}, \quad \hbox {j} = 1,2,3,{\ldots },\hbox {J}. \end{aligned}$$

where \(\hbox {D}^{+}_{\mathrm{j}}\) and \(\hbox {D}^{-}_{\mathrm{j}}\) represents the distance between the performances scores of alternatives with respect to all criteria and all the ideal and negative ideal solutions respectively.

Step 5: Calculation of relative closeness to the ideal solution

$$\begin{aligned} CC_j^+ =\frac{D_j^- }{D_j^+ +D_j^- },\quad \hbox {j} = 1,2,3,{\ldots },\hbox {J}. \end{aligned}$$

where \(\hbox {CC}_j^{+}\) denotes the final performance score in TOPSIS method, the chosen alternative has the maximum value of performance score expressed as the more prior alternatives.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirubakaran, B., Ilangkumaran, M. Selection of optimum maintenance strategy based on FAHP integrated with GRA–TOPSIS. Ann Oper Res 245, 285–313 (2016). https://doi.org/10.1007/s10479-014-1775-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-014-1775-3

Keywords

Navigation