Abstract
In this paper, we develop an interactive algorithm that finds the most preferred solution of a decision maker (DM) for multi-objective integer programming problems. We assume that the DM’s preferences are consistent with a quasiconcave value function unknown to us. Based on the properties of quasiconcave value functions and pairwise preference information obtained from the DM, we generate constraints to restrict the implied inferior regions. The algorithm continues iteratively and guarantees to find the most preferred solution for integer programs. We test the performance of the algorithm on multi-objective assignment, knapsack, and shortest path problems and show that it works well.
Similar content being viewed by others
References
Alves, M. J., & Clímaco, J. (1999). Using cutting planes in an interactive reference point approach for multi-objective integer linear programming problems. European Journal of Operational Research, 117, 565–577.
Alves, M. J., & Clímaco, J. (2000). An interactive reference point approach for multi-objective mixed-integer programming using branch-and-bound. European Journal of Operational Research, 124, 478–494.
Alves, M. J., & Clímaco, J. (2007). A review of interactive methods for multi-objective integer and mixed-integer programming. European Journal of Operational Research, 180, 99–115.
Crouch, R. L. (1979). Human behavior: an economic approach. Duxbury: Duxbury.
Dehnokhalaji, A., Korhonen, P., Köksalan, M., Nasrabadi, N., & Wallenius, J. (2011). Convex cone-based partial order for multiple criteria alternatives. Decision Support Systems, 51(2), 256–261.
Ehrgott, M., & Gandibleux, X. (2000). A survey and annotated bibliography of multiobjective combinatorial optimization. OR Spektrum, 22(4), 425–460.
Karaivanova, J., Korhonen, P., Narula, S., Wallenius, J., & Vassilev, V. (1995). A reference direction approach to multiple objective integer linear programming. European Journal of Operational Research, 81, 176–187.
Karwan, M. H., Zionts, S., Villarreal, B., & Ramesh, R. (1985). An improved interactive multicriteria integer programming algorithm. In Y. Y. Haimes & V. Chankong (Eds.), Decision making with multiple objectives (Vol. 242, pp. 261–271)., Lecture notes in economics and mathematical systems Berlin: Springer.
Köksalan, M., Karwan, M. H., & Zionts, S. (1984). An improved method for solving multiple criteria problems involving discrete alternatives. In IEEE: Transaction on Systems, Man and Cybernetics, SMC-14 (pp. 24–34).
Köksalan, M. & Lokman, B. (2009). Approximating the nondominated frontiers of multi-objective combinatorial optimization problems. Naval Research Logistics, 56, 191–198.
Köksalan, M., & Taner, O. V. (1992). An approach for finding the most preferred alternative in the presence of multiple criteria. European Journal of Operational Research, 60, 52–60.
Korhonen, P., Wallenius, J., & Zionts, S. (1984). Solving the discrete multiple criteria problem using convex cones. Management Science, 30(11), 1336–1345.
Lokman, B., & Köksalan, M. (2013). Finding all nondominated points of multi-objective integer programs. Journal of Global Optimization, 57, 347–365.
Marcotte, O., & Soland, R. M. (1986). An interactive branch-and-bound algorithm for multiple criteria optimization. Management Science, 32(1), 61–75.
Özpeynirci, Ö., & Köksalan, M. (2010). An exact algorithm for finding extreme supported nondominated points of multiobjective mixed integer programs. Management Science, 56(12), 2302–2315.
Prasad, S. Y., Karwan, M. H., & Zionts, S. (1997). Use of convex cones in interactive multiple objective decision making. Management Science, 43(5), 723–734.
Ramesh, R., Karwan, M. H., & Zionts, S. (1989). Preference structure representation using convex cones in multicriteria integer programming. Management Science, 35(9), 1092–1105.
Ramesh, R., Zionts, S., & Karwan, M. H. (1986). A class of practical interactive branch and bound algorithms for multicriteria integer programming. European Journal of Operational Research, 26, 161–172.
Ramesh, R., Zionts, S., & Karwan, M. H. (1988). Theory of convex cones in multicriteria decision making. Annals of Operations Research, 16, 131–148.
Silberberg, E. (1978). The structure of economics. New York: McGraw Hill.
Steuer, R. E. (1986). Multiple criteria optimization: theory, computation, and application. New York: Wiley.
Steuer, R. E., & Choo, E.-U. (1983). An interactive weighted Tchebycheff procedure for multiple objective programming. Mathematical Programming, 26, 326–344.
Steuer, R. E., Silverman, J., & Whisman, A. W. (1993). A combined Tchebycheff/aspiration criterion vector interactive multi-objective programming procedure. Management Science, 39(10), 1255–1260.
Taner, O. V., & Köksalan, M. M. (1991). Experiments and an improved method for solving the discrete alternative multiple-criteria problem. Journal of the Operational Research Society, 42(5), 383–391.
Vassilev, V., & Narula, S. C. (1993). A reference direction algorithm for solving multiple objective integer linear programming problems. Journal of the Operational Research Society, 44(12), 1201–1209.
Wierzbicki, A. P. (1982). A mathematical basis for satisficing decision making. Mathematical Modelling, 3, 391–405.
Wierzbicki, A. P. (1986). On the completeness and constructiveness of parametric characterizations to vector optimization problems. OR Spectrum, 8, 73–87.
Zionts, S., & Wallenius, J. (1976). An interactive programming method for solving the multiple criteria problem. Management Science, 22(6), 652–663.
Zionts, S., & Wallenius, J. (1983). An interactive multiple objective linear programming method for a class of underlying nonlinear utility functions. Management Science, 29(5), 519–529.
Acknowledgments
Pekka Korhonen and Jyrki Wallenius acknowledge the research support by the Academy of Finland Grant Numbers 133387 and 253583.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Lokman, B., Köksalan, M., Korhonen, P.J. et al. An interactive algorithm to find the most preferred solution of multi-objective integer programs. Ann Oper Res 245, 67–95 (2016). https://doi.org/10.1007/s10479-014-1545-2
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10479-014-1545-2