An interactive algorithm to find the most preferred solution of multi-objective integer programs | Annals of Operations Research Skip to main content
Log in

An interactive algorithm to find the most preferred solution of multi-objective integer programs

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

In this paper, we develop an interactive algorithm that finds the most preferred solution of a decision maker (DM) for multi-objective integer programming problems. We assume that the DM’s preferences are consistent with a quasiconcave value function unknown to us. Based on the properties of quasiconcave value functions and pairwise preference information obtained from the DM, we generate constraints to restrict the implied inferior regions. The algorithm continues iteratively and guarantees to find the most preferred solution for integer programs. We test the performance of the algorithm on multi-objective assignment, knapsack, and shortest path problems and show that it works well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alves, M. J., & Clímaco, J. (1999). Using cutting planes in an interactive reference point approach for multi-objective integer linear programming problems. European Journal of Operational Research, 117, 565–577.

    Article  Google Scholar 

  • Alves, M. J., & Clímaco, J. (2000). An interactive reference point approach for multi-objective mixed-integer programming using branch-and-bound. European Journal of Operational Research, 124, 478–494.

    Article  Google Scholar 

  • Alves, M. J., & Clímaco, J. (2007). A review of interactive methods for multi-objective integer and mixed-integer programming. European Journal of Operational Research, 180, 99–115.

    Article  Google Scholar 

  • Crouch, R. L. (1979). Human behavior: an economic approach. Duxbury: Duxbury.

    Google Scholar 

  • Dehnokhalaji, A., Korhonen, P., Köksalan, M., Nasrabadi, N., & Wallenius, J. (2011). Convex cone-based partial order for multiple criteria alternatives. Decision Support Systems, 51(2), 256–261.

    Article  Google Scholar 

  • Ehrgott, M., & Gandibleux, X. (2000). A survey and annotated bibliography of multiobjective combinatorial optimization. OR Spektrum, 22(4), 425–460.

    Article  Google Scholar 

  • Karaivanova, J., Korhonen, P., Narula, S., Wallenius, J., & Vassilev, V. (1995). A reference direction approach to multiple objective integer linear programming. European Journal of Operational Research, 81, 176–187.

    Article  Google Scholar 

  • Karwan, M. H., Zionts, S., Villarreal, B., & Ramesh, R. (1985). An improved interactive multicriteria integer programming algorithm. In Y. Y. Haimes & V. Chankong (Eds.), Decision making with multiple objectives (Vol. 242, pp. 261–271)., Lecture notes in economics and mathematical systems Berlin: Springer.

    Chapter  Google Scholar 

  • Köksalan, M., Karwan, M. H., & Zionts, S. (1984). An improved method for solving multiple criteria problems involving discrete alternatives. In IEEE: Transaction on Systems, Man and Cybernetics, SMC-14 (pp. 24–34).

  • Köksalan, M. & Lokman, B. (2009). Approximating the nondominated frontiers of multi-objective combinatorial optimization problems. Naval Research Logistics, 56, 191–198.

    Google Scholar 

  • Köksalan, M., & Taner, O. V. (1992). An approach for finding the most preferred alternative in the presence of multiple criteria. European Journal of Operational Research, 60, 52–60.

    Article  Google Scholar 

  • Korhonen, P., Wallenius, J., & Zionts, S. (1984). Solving the discrete multiple criteria problem using convex cones. Management Science, 30(11), 1336–1345.

    Article  Google Scholar 

  • Lokman, B., & Köksalan, M. (2013). Finding all nondominated points of multi-objective integer programs. Journal of Global Optimization, 57, 347–365.

    Article  Google Scholar 

  • Marcotte, O., & Soland, R. M. (1986). An interactive branch-and-bound algorithm for multiple criteria optimization. Management Science, 32(1), 61–75.

    Article  Google Scholar 

  • Özpeynirci, Ö., & Köksalan, M. (2010). An exact algorithm for finding extreme supported nondominated points of multiobjective mixed integer programs. Management Science, 56(12), 2302–2315.

    Article  Google Scholar 

  • Prasad, S. Y., Karwan, M. H., & Zionts, S. (1997). Use of convex cones in interactive multiple objective decision making. Management Science, 43(5), 723–734.

    Article  Google Scholar 

  • Ramesh, R., Karwan, M. H., & Zionts, S. (1989). Preference structure representation using convex cones in multicriteria integer programming. Management Science, 35(9), 1092–1105.

    Article  Google Scholar 

  • Ramesh, R., Zionts, S., & Karwan, M. H. (1986). A class of practical interactive branch and bound algorithms for multicriteria integer programming. European Journal of Operational Research, 26, 161–172.

    Article  Google Scholar 

  • Ramesh, R., Zionts, S., & Karwan, M. H. (1988). Theory of convex cones in multicriteria decision making. Annals of Operations Research, 16, 131–148.

    Article  Google Scholar 

  • Silberberg, E. (1978). The structure of economics. New York: McGraw Hill.

    Google Scholar 

  • Steuer, R. E. (1986). Multiple criteria optimization: theory, computation, and application. New York: Wiley.

    Google Scholar 

  • Steuer, R. E., & Choo, E.-U. (1983). An interactive weighted Tchebycheff procedure for multiple objective programming. Mathematical Programming, 26, 326–344.

    Article  Google Scholar 

  • Steuer, R. E., Silverman, J., & Whisman, A. W. (1993). A combined Tchebycheff/aspiration criterion vector interactive multi-objective programming procedure. Management Science, 39(10), 1255–1260.

    Article  Google Scholar 

  • Taner, O. V., & Köksalan, M. M. (1991). Experiments and an improved method for solving the discrete alternative multiple-criteria problem. Journal of the Operational Research Society, 42(5), 383–391.

    Article  Google Scholar 

  • Vassilev, V., & Narula, S. C. (1993). A reference direction algorithm for solving multiple objective integer linear programming problems. Journal of the Operational Research Society, 44(12), 1201–1209.

    Article  Google Scholar 

  • Wierzbicki, A. P. (1982). A mathematical basis for satisficing decision making. Mathematical Modelling, 3, 391–405.

    Article  Google Scholar 

  • Wierzbicki, A. P. (1986). On the completeness and constructiveness of parametric characterizations to vector optimization problems. OR Spectrum, 8, 73–87.

    Article  Google Scholar 

  • Zionts, S., & Wallenius, J. (1976). An interactive programming method for solving the multiple criteria problem. Management Science, 22(6), 652–663.

    Article  Google Scholar 

  • Zionts, S., & Wallenius, J. (1983). An interactive multiple objective linear programming method for a class of underlying nonlinear utility functions. Management Science, 29(5), 519–529.

    Article  Google Scholar 

Download references

Acknowledgments

Pekka Korhonen and Jyrki Wallenius acknowledge the research support by the Academy of Finland Grant Numbers 133387 and 253583.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Banu Lokman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lokman, B., Köksalan, M., Korhonen, P.J. et al. An interactive algorithm to find the most preferred solution of multi-objective integer programs. Ann Oper Res 245, 67–95 (2016). https://doi.org/10.1007/s10479-014-1545-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-014-1545-2

Keywords

Navigation