Partial equilibrium logic | Annals of Mathematics and Artificial Intelligence Skip to main content
Log in

Abstract

Partial equilibrium logic (PEL) is a new nonmonotonic reasoning formalism closely aligned with logic programming under well-founded and partial stable model semantics. In particular it provides a logical foundation for these semantics as well as an extension of the basic syntax of logic programs. In this paper we describe PEL, study some of its logical properties and examine its behaviour on disjunctive and nested logic programs. In addition we consider computational features of PEL and study different approaches to its computation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Brass, S., Dix, J.: A disjunctive semantics based on unfolding and bottom-up evaluation. In: Proceedings of IFIP 1994 Congress, Workshop FG2: Disjunctive Logic Programming and Disjunctive Databases, pp. 83–91. Springer (1994)

  2. Brass, S., Dix, J.: Characterizations of the disjunctive stable semantics by partial evaluation. J. Log. Program. 30, 207–228 (1997)

    Article  MathSciNet  Google Scholar 

  3. Brass, S., Dix, J.: Characterizations of the disjunctive well-founded semantics: confluent calculi and iterated GCWA. J. Autom. Reason. 20, 143–165 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  4. Brass, S., Dix, J.: Semantics of (Disjunctive) logic programs based on partial evaluation. J. Log. Program. 40, 1–46 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  5. Brass, S., Dix, J., Niemelä, I., Przymusinski, T.: On the equivalence of the static and disjunctive well-founded semantics and its computation. Theor. Comp. Sci. 258(1–2), 523–553 (2001)

    Article  MATH  Google Scholar 

  6. Cabalar, P., Odintsov, S., Pearce, D.: Logical foundations of well-founded semantics. In: Proceedings of KR 2006, pp. 25–35. AAAI Press (2006)

  7. Cabalar, P., Odintsov, S., Pearce, D., Valverde, A.: Analysing and extending well-founded and partial stable semantics using partial equilibrium logic. In: Etalle, S., Truszczynski, M. (eds.) Proceedings of ICLP 2006, LNCS 4079, pp. 346–360. Springer (2006)

  8. Cabalar, P., Odintsov, S., Pearce, D.: Strong negation in well-founded and partial stable semantics for logic programs. In: Simão Sichman, J., Coelho, H., Oliveira Rezende, S. (eds.) Proceedings of IBERAMIA-SBIA 2006, LNCS 4140, pp. 592–601. Springer (2006)

  9. Dix, J.: A classification-theory of semantics of normal logic programs: I. strong properties. Fundam. Inform. 22(3), 227–255 (1995)

    MATH  MathSciNet  Google Scholar 

  10. Dix, J.: A classification-theory of semantics of normal logic programs: II. weak properties. Fundam. Inform. 22(3), 257–288 (1995)

    MATH  MathSciNet  Google Scholar 

  11. Eiter, T., Fink, M., Tompits, H., Woltran, S.: Simplifying logic programs under uniform and strong equivalence. In: Lifschitz, V., Niemelä, I. (eds.) Proceedings of LPNMR 2004, LNAI 2923, pp. 87–99. Springer (2004)

  12. Eiter, T., Leone, N., Saccà, D.: On the partial semantics for disjunctive deductive databases. Ann. Math. Artif. Intell. 17, 59–96 (1997)

    Article  Google Scholar 

  13. Eiter, T., Leone, N., Saccà, D.: Expressive power and complexity of partial models for disjunctive deductive databases. Theor. Comp. Sci. 206, 181–218 (1998)

    Article  MATH  Google Scholar 

  14. Erdogan, S.T., Lifschitz, V.: Definitions in answer set programming. In: Lifschitz, V., Niemelä, I. (eds.) Proceedings of ICLP 04, LNAI 2923, pp. 114–126. Springer (2004)

  15. Hähnle, R.: Automated Deduction in Multiple-valued Logics. Volume 10 of International Series of Monographs on Computer Science. Oxford University Press (1994)

  16. Janhunen, T., Niemelä, I., Seipel, D., Simons, P., You, J.-H.: Unfolding partiality and disjunctions in stable model semantics. ACM Trans. Comput. Log. 7(1), 1–37 (2006)

    Article  MathSciNet  Google Scholar 

  17. Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential models and cumulative logics. Artif. Intell. 44, 167–207 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  18. Lifschitz, V., Turner, H.: Splitting a logic program. In: van Hentenryck, P. (ed.) Proceedings of ICLP 1994, pp. 23–37. MIT Press (1994)

  19. Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM Trans. Comput. Log. 2(4), 526–541 (2001)

    Article  MathSciNet  Google Scholar 

  20. Lifschitz, V., Tang, L.R., Turner, H.: Nested expressions in logic programs. Ann. Math. Artif. Intell. 25(3–4), 369–389 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  21. Makinson, D.: General theory of cumulative inference. In: Reinfrank, M., et al. (eds.) Non-Monotonic Reasoning, LNAI 346, pp. 1–18. Springer (1989)

  22. Makinson, D.: General patterns in nonmonotonic reasoning. In: Gabbay, D., Hogger, C.J., Robinson, J.A. (eds.) Handbook of Logic in Artificial Intelligence. Clarendon Press (1994)

  23. Osorio, M., Navarro, J., Arrazola, J.: Equivalence in answer set programming. In: Pettorossi, A. (ed.) Proceedings of LOPSTR 2001, LNCS 2372, pp. 57–75. Springer (2001)

  24. Pearce, D.: Equilibrium logic. Ann. Math. Artif. Intell. 47, 3–41 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  25. Pearce, D., de Guzmán, I.P., Valverde, A.: A tableau calculus for equilibrium entailment. In: Dyckhoff, R. (ed.) Proceedings of TABLEAUX 2000, LNAI 1847, pp. 352–367. Springer (2000)

  26. Pearce, D., de Guzmán, I.P., Valverde, A.: Computing equilibrium models using signed formulas. In: Proceedings of CL2000, LNCS 1861, pp. 688–703. Springer (2000)

  27. Pearce, D., Valverde, A.: Uniform equivalence for equilibrium logic and logic programs. In: Lifschitz, V., Niemelä, I. (eds.) Proceedings of LPNMR 2004, LNAI 2923, pp. 194–206. Springer (2004)

  28. Pereira, L.M., Alferes, J.J.: Well founded semantics for logic programs with explicit negation. In: Neumann, B. (ed.) European Conference on Artificial Intelligence, pp. 102–106. John Wiley and Sons (1992)

  29. Przymusinski, T.: Stable semantics for disjunctive programs. New Gener. Comput. 9, 401–424 (1991)

    Article  Google Scholar 

  30. Przymusinski, T.: Well-founded and stationary models of logic programs. Ann. Math. Artif. Intell. 12, 141–187 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  31. Routley, R., Routley, V.: The semantics of first degree entailment. Noûs 6, 335–359 (1972)

    Article  MathSciNet  Google Scholar 

  32. Ruiz, C., Minker, J.: Computing stable and partial stable models of extended disjunctive logic programs. In: Nonmonotonic Extensions of Logic Programming, LNCS 927, pp. 205–229. Springer (1995)

  33. Seipel, D., Minker, J., Ruiz, C.: A characterization of the partial stable models for disjunctive deductive databases. In: Int. Logic Programming Symp., pp. 245–259. MIT Press (1997)

  34. Vakarelov, D.: Notes on constructive logic with strong negation. Stud. Log. 36, 89–107 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  35. van Gelder, A., Ross, K.A., Schlipf, J.S.: Unfounded sets and well-founded semantics for general logic programs. J. ACM 38(3), 620–650 (1991)

    Article  MATH  Google Scholar 

  36. Wang, K., Zhou, L.: Comparisons and computation of well-founded semantics for disjunctive logic programs. ACM Trans. Comput. Log. 6(2), 295–327 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Cabalar.

Additional information

Partially supported by MEC projects TIC-2003-9001-C02 and TIN2006-15455-CO3.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cabalar, P., Odintsov, S., Pearce, D. et al. Partial equilibrium logic. Ann Math Artif Intell 50, 305–331 (2007). https://doi.org/10.1007/s10472-007-9075-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10472-007-9075-0

Keywords

Mathematics Subject Classifications (2000)

Navigation