Fractal analysis and fuzzy c-means clustering for quantification of fibrotic microscopy images | Artificial Intelligence Review Skip to main content
Log in

Fractal analysis and fuzzy c-means clustering for quantification of fibrotic microscopy images

  • Published:
Artificial Intelligence Review Aims and scope Submit manuscript

Abstract

The advances in improved fluorescent probes and better cameras in collaboration with the advent of computers in imaging and image analysis, assist the task of diagnosis in microscopy imaging. Based on such technologies, we introduce a computer-assisted image characterization tool based on fractal analysis and fuzzy clustering for the quantification of degree of the Idiopathic Pulmonary Fibrosis in microscopy images. The implementation of this algorithmic strategy proved very promising concerning the issue of the automated assessment of microscopy images of lung fibrotic regions against conventional classification methods that require training such as neural networks. Fractal dimension is an important image feature that can be associated with pathological fibrotic structures as is shown by our experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Antoniou KM, Pataka A, Bouros D, Siafakas NM (2007) Pathogenetic pathways and novel pharmacotherapeutic targets in idiopathic pulmonary fibrosis. Pulm Pharmacol Ther 20(5):453–461

    Article  Google Scholar 

  • Asvestas P, Matsopoulos G, Nikita K (1998) A power differentiation method of fractal dimension estimation for 2-d signals. J Vis Commun Image Represent 9(4):392–400

    Article  Google Scholar 

  • Balghonaim AS, Keller JM (1998) A maximum likelihood estimate for two-variable fractal surface. Trans Image Process 7(12):1746–1753

    Article  Google Scholar 

  • Bedossa P, Dargére D, Paradis V (2003) Sampling variability of liver fibrosis in chronic hepatitis C. Hepatology 38(6):1449–1457

    Article  Google Scholar 

  • Bezdek JC (1981) Pattern recognition with fuzzy objective function algorithms. Kluwer, Norwell, MA

    Book  MATH  Google Scholar 

  • Caballero T, Pérez-Milena A, Masseroli M, O’Valle F, Salmerón F, Del Moral R, Sánchez-Salgado G (2001) Liver fibrosis assessment with semiquantitative indexes and image analysis quantification in sustained-responder and non-responder interferon-treated patients with chronic hepatitis C. J Hepatol 34(5):740–747

    Article  Google Scholar 

  • Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC (1994) Green fluorescent protein as a marker for gene expression. Science 263(5148):802–805

    Article  Google Scholar 

  • Chaudhuri BB, Sarkar N (1995) Texture segmentation using fractal dimension. IEEE Trans Pattern Anal Mach Intell 17(1):72–77

    Article  Google Scholar 

  • Coultas DB, Zumwalt RE, Black WC, Sobonya RE (1994) The epidemiology of interstitial lung diseases. Am J Respir Crit Care Med 150(4):967–972

    Google Scholar 

  • Cox E (2005) Fuzzy modeling and genetic algorithms for data mining and exploration. Elsevier, Amsterdam

    MATH  Google Scholar 

  • Foroutan-pour K, Dutilleul P, Smith D (1999) Advances in the implementation of the box-counting method of fractal dimension estimation. Appl Math Comput 105(23):195–210

    Article  MATH  Google Scholar 

  • Hussain M, Merchant S, Mombasawala L, Puniyani R (2004) A decrease in effective diameter of rat mesenteric venules due to leukocyte margination after a bolus injection of pentoxifylline digital image analysis of an intravital microscopic observation. Microvasc Res 67(3):237–244

    Article  Google Scholar 

  • Ida T, Sambonsugi Y (1998) Image segmentation and contour detection using fractal coding. IEEE Trans Circuits Sys Video Technol 8(8):968–975

    Article  Google Scholar 

  • Iliadis L, Vangeloudh M, Spartalis S (2010) An intelligent system employing an enhanced fuzzy c-means clustering model: application in the case of forest fires. Comput Electron Agric 70(2):276–284

    Article  Google Scholar 

  • Inoué S, Spring K (1997) Video microscopy. Plenum, New York

    Book  Google Scholar 

  • Izbicki G, Segel M, Christensen T, Conner M, Breuer R (2002) Time course of bleomycin-induced lung fibrosis. Int J Exp Path 83(3):111–119

    Article  Google Scholar 

  • König P, Kayser C, Bonin V, Würtz R (2001) Efficient evaluation of serial sections by iterative gabor matching. J Neurosci Methods 111(2):141–150

    Article  Google Scholar 

  • Li J, Du Q, Sun C (2009) An improved box-counting method for image fractal dimension estimation. Pattern Recognit 42(11):2460–2469

    Article  MATH  Google Scholar 

  • Liu SC, Chang S (1997) Dimension estimation of discrete-time fractional Brownian motion with applications to image texture classification. Trans Image Process 6(8):1176–1184

    Article  Google Scholar 

  • Maglogiannis I, Sarimveis H, Kiranoudis CT, Chatziioannou AA, Oikonomou N, Aidinis V (2008) Radial basis function neural networks classification for the recognition of idiopathic pulmonary fibrosis in microscopic images. IEEE Trans Inf TechnolBiomed 12(1):42–54

    Article  Google Scholar 

  • Mandelbrot B (1983) The fractal geometry of nature. W.H. Freeman and Co., New York

    Google Scholar 

  • Masseroli M, Caballero T, O’Valle F, Del-Moral R, Pérez-Milena A, Del-Moral R (2000) Automatic quantification of liver fibrosis: design and validation of a new image analysis method: comparison with semi-quantitative indexes of fibrosis. J Hepatol 32(3):453–464

    Article  Google Scholar 

  • Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9(1):62–66

    Google Scholar 

  • Peitgen HO, Jürgens H, Saupe D (1993) Chaos and fractals: new frontiers of science. Springer, Berlin

    Google Scholar 

  • Pentland AP (1984) Fractal-based description of natural scenes. IEEE Trans Pattern Anal Mach Intell 6(6): 661–674

    Google Scholar 

  • Selman M, Pardo A (2002) Idiopathic pulmonary fibrosis: an epithelial/fibroblastic cross-talk disorder. Respir Res 3(1):3

    Article  Google Scholar 

  • Shiraishi K, Takihara H, Naito K (2002) Influence of interstitial fibrosis on spermatogenesis after vasectomy and vasovasostomy. Contraception 65(3):245–249

    Article  Google Scholar 

  • Shiraishi K, Takihara H, Naito K (2003) Quantitative analysis of testicular interstitial fibrosis after vasectomy in humans. Aktuelle Urologie 34(4):262–264

    Article  Google Scholar 

  • Shotton DM (1998) Image resolution and digital image processing in electronic light microscopy. In: Celis JE (ed) Cell biology, a laboratory handbook, vol 3, 2nd edn. Academic Press, San Diego, pp 85–98

  • Tasoulis S, Maglogiannis I, Plagianakos V (2012) Unsupervised detection of fibrosis in microscopy images using fractals and fuzzy c-means clustering. In: Iliadis L, Maglogiannis I, Papadopoulos H (eds) Artificial intelligence applications and innovations, IFIP advances in information and communication technology, vol 381. Springer, Berlin, pp 385–394

  • Yagura M, Murai S, Kojima H, Tokita H, Kamitsukasa H, Harada H (2000) Changes of liver fibrosis in chronic hepatitis c patients with no response to interferon-alpha therapy: including quantitative assessment by a morphometric method. J Gastroenterol 35(2):105–111

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the European Union (European Social Fund ESF) and Greek national funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF)—Research Funding Program: “Heracleitus II. Investing in knowledge society through the European Social Fund.” for financially supporting this work. Part of this work has been also funded by Program: Thalis—Interdisciplinary Research in Affective Computing for Biological Activity Recognition in Assistive Environments/Operational Program “Education and Lifelong Learning”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Maglogiannis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tasoulis, S.K., Maglogiannis, I. & Plagianakos, V.P. Fractal analysis and fuzzy c-means clustering for quantification of fibrotic microscopy images. Artif Intell Rev 42, 313–329 (2014). https://doi.org/10.1007/s10462-013-9408-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10462-013-9408-9

Keywords

Navigation