Abstract
With rapid increase in disease variety, the role of image segmentation has been crucial in image guided surgery. Despite having a lot of existing methods, the robustness of an algorithm remains a concern with respect to the input image variety. This paper presents a state of art segmentation algorithms of “MICCAI Grand Challenge and Conference 2007, 2008 and 2009”. These algorithms are reported to have tested on real datasets used in “MICCAI Grand Challenge 2007, 2008 and 2009”. Due to the page constraint, selected papers based on some criteria are included in this review. In this work, we have implemented and evaluated all these methods on a particular data. The objective of this paper is to exhibit the divergence in performance if the input data is varied.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Adamsm R, Bischop L (1994) Seeded region growing. IEEE Trans Pattern Anal Mach Intell 16: 641–647
Awate S, Tasdizen T, Foster N, Whitaker R (2006) Adaptive markov modeling for mutual-information-based, unsupervised MRI brain-tissue classification. Med Image Anal 10: 726–739
Beichel G, Gotschuli R, Sorantin E (2002) Diaphragm dome surface segmentation in CT data sets : a 3D active appearance model approach. Prog Biomed Optics Imaging 3: 475–484
Bishop C (1995) Neural networks for pattern recognition. Oxford University Press, Oxford
Boykov Y, Veksler O, Zabih R (1998) Markov random fields with efficient approximations. In: IEEE Conference on computer vision and pattern recognition, pp 648–655
Casselles R, Kimmel V, Sapiro G (1997) Geodesic active contours. Int J Comput Vis 22: 61–79
Choudhary A, Moretto N, Ferrarese F, Zamboni G (2008) An entropy based multi-thresholding method for semi-automatic segmentation of liver tumors. In: 3D segmentation in the clinic: a grand challenge
Coifman R, Maggioni M (2006) Disffusion wavelets. Appl Comput Harmon Anal 21: 53–94
Conners R, Harlow C (1980) A theoretical comparison of texture algorithms. IEEE Trans Pattern Anal Mach Intell 2: 205–222
Cootes T, Edwards G, Taylar C (1998) Active appearance models. Eur Conf Comput Vis 2: 484–498
Cootes T, Hill A, Taylor C, Haslam J (1994) The use of active shape models for locating structures in medical images. Image Vis Comput 12: 355–365
Cootes T, Taylor C, Cooper D, Graham J (1995) Active shape model—their training and application. Comput Vis Image Underst 61: 38–59
Cox I, Hingorani S (1995) Dynamic histogram warping of image pairs for constant image brightness. In: ICIP, Washington, DC, USA, pp 366–369
Cristianini N, Shawe-Taylor J (2000) An introduction to support vector machines and other kernel-based learning methods. University of Cambridge, Cambridge
3D segmentation in the clinic: a grand challenge II. MICCAI, 2007. [Online]. Available: http://grand-challenge2008.bigr.nl/
Dakua S, Sahambi J (2010) Automatic contour extraction of multi-labeled left ventricle from CMR images using CB and random walk approach. Cardiovasc Eng 10: 30–43
Dakua S, Sahambi S (2011) Modified active contour model and random walk approach for left ventricular cardiac MR image segmentation. Int J Numer Methods Biomed Eng 27: 1351–1361
Dice L (1945) Measures of the amount of ecologic association between species. Ecology 26: 297–302
Dijkstra E (1959) A note on two problems in connexion with graph. Numer Math 1: 269–271
Duchon Z (1977) Splines minimizing rotation invariant semi-norms in Sobolev spaces. Lect Notes Math 57: 85–100
Essafi S, Langsand G, Paragios N (2009) Left ventricle segmentation using diffusion wavelets and boosting. In: MICCAI 2009, Part II, LNCS, vol 5762, pp 919–926(1977)
Fasel J, Gailloud P, Terrier F, Mentha G, Sprumont P (1996) Segmental anatomy of the liver: a review and proposal for an international working nomenclature. Eur Radiol 6: 834–837
Fishman E, Kuszyk B, Heath D, LG , Cabral B (1996) Surgical planning for liver resection. Computer 29(1): 64–72
Florin C, Paragios N, Williams J (2005) Particle filters, a quasi-Monte Carlo solution for segmentation of coronaries. In: MICCAI’05, pp 246–253
Frangi A, Rueckert D, Schnabel J, Niessen W (2002) Automatic construction of multiple-object three-dimensional statistical shape models: application to cardiac modeling. IEEE Trans Med Imaging 21: 1151–1166
Freund Y, Schapire R (1997) A decision-theoretic generalization of on-line learning and an application to boosting. J Comput Syst Sci 55: 119–139
Gerig M, Chakos M, Niessen W, Viergever M (2001) A new validation tool for assessing and improving 3D object segmentation. In: MICCAI 2001. LNCS, vol 2208. Springer, Berlin, pp 516–523
Gonzalez RC, Wintz P (1987) Digital image processing, 2nd edn. Addison-Wesley, Reading, MA
Grossmann E (2004) Adatree: boosting a weak classifier into a decision tree. In: CVPR workshop on learning in computer vision and pattern recognition 2004
Heimann T et al (2009) Comparison and evaluation of methods for liver segmentation from CT datasets. IEEE Trans Med Imaging 28: 1251–1265
Horikawa T, Furuhashi S, Uchikawa Y (1992) On fuzzy modeling using fuzzy nural network with the back propagation algorithm. IEEE Trans Neural Netw 5: 801–806
Hu E, Hoffman S, Reinhardt J (2001) Automatic lung segmentation for accurate quantitation of volumetric X-ray CT images. IEEE Trans Med Imaging 20: 490–498
Jolly M (2008) Automatic recovery of the left ventricular blood pool in cardiac cine MR images. In: MICCAI 2008, Part I, LNCS, vol 5241. Springer, Heidelberg, pp 110–118
Jolly M, Xue H, Grady L, Guehring J (2009) Combining registration and minimum surfaces for the segmentation of thjolly09e left ventricle in cardiac cine mr images. In: MICCAI 2009, Part II, LNCS, vol 5762, pp 910–918
Kainmuller D, Lange T, Lamecker H (2007) Shape constrained automatic segmentation of the liver based on a heuristic intensity model. In: 3D Segmentation in the clinic: a grand challenge, pp 109–116
Kullback S (1968) Information theory and statistics. Dover Publications, New York
Lesage D, Angelini E, Bloch I, Funka-Lea G (2009) Bayesian maximal paths for coronary artery segmentation from 3D CT angiograms. In: MICCAI 2009, Part I, LNCS, vol 5761, pp 222–229(1968)
Li C, Lee C (1993) Minimum cross entropy thresholding. Pattern Recogn 26: 617–625
Li J, Sun Y, Tang C (2004) Lazy snapping. ACM Trans Graph 23: 303–308
Linguraru M, Sandberg J, Li Z, Pura J, Summers R (2009) Atlas-based automated segmentation of spleen and liver using adaptive enhancement estimation. In: MICCAI 2009, Part II, LNCS, vol 5762, pp 1001–1008
Lowe D (2004) Distinctive image features from scale invariant keypoints. Int J Comput Vis 60: 91–110
Lu L, Wolf M, Liang J, Dundar M, Bi J, Salganicoff M (2009) A two-level approach towards semantic colon segmentation: removing extra-colonic findings. In: MICCAI 2009, Part II, LNCS, vol 5762, pp 1009–1016
Nugroho H, Ihtatho D (2008) Contrast enhancement for liver tumor identification. In: 3D segmentation in the clinic: a grand challenge
Okada T, Yokota K, Hori M, Nakamoto M, Nakamura H, Sato Y (2008) Construction of hierarchical multi-organ statistical atlases and their application to multiorgan segmentation from CT images. In: MICCAI 2008, Part I, LNCS, vol 5241. Springer, Heidelberg, pp 502–509
Parada M, Noble J (2000) 2D+T acoustic boundary detection in echocardiography. Med Image Anal 4: 21–31
Rajpoot K, Noble J, Grau V, Szmigielski C, Becher H (2009) Image-driven cardiac left ventricle segmentation for the evaluation of multiview fused real-time. In: MICCAI 2009, Part II, LNCS, vol 5762, pp 893–900
Rikxoort E, Prokop M, Hoop B, Viergever M, Pluim J, Ginneken B (2009) Automatic segmentation of the pulmonary lobes from fissures, airways, and lung borders: evaluation of robustness against missing data. In: MICCAI 2009, Part I, LNCS, vol 5761, pp 263–271
Ross J, Estepar R, Diaz S, Westin C, Kikinis R, Silverman E, Washko G (2009) Lung extraction, lobe segmentation and hierarchical region assessment for quantitative analysis on high resolution computed tomography images. In: MICCAI 2009, Part II, LNCS, vol 5762, pp 690–698
Rusko L, Bekes G, Nemeth G, Fidrich M (2007) Fully automatic liver segmentation for contrast-enhanced CT images. In: 3D Segmentation in the clinic: a grand challenge, pp 143–150
Schmidt G, Athelogou M, Schonmeyer R, Korn R, Binnig G (2007) Cognition network technology for a fully automated 3D segmentation of liver. In: Workshop in 3D segmentation in the clinic: a grand challenge, vol 1. MICCAI, pp 125–134
Schmidt G, Binnig G, Kietzmann M, Kim J (2008) Cognition network technology for a fully automated 3D segmentation of liver tumors. In: 3D segmentation in the clinic: a grand challenge. MICCAI
Shen T, Huang X (2009) 3D medical image segmentation by multiple-surface active volume models. In: MICCAI 2009, Part II, LNCS, vol 5762, pp 1059–1066
Shimizu A, Narihira T, Furukawa D, Kobatake H, Nawano S, Shinozaki K (2008) Ensemble segmentation using AdaBoost with application to liver lesion extraction from a CT volume. In: 3D segmentation in the clinic: a grand challenge
Smeets D, Stijnen B, Loeckx D, Dobbelaer B, Suetens P (2008) Segmentation of liver metastases using a level set method with spiral-scanning technique and supervised fuzzy pixel classification. In: 3D segmentation in the clinic: a grand challenge
Song Z, Awate S, Licht D, Gee J (2007) Clinical neonatal brain MRI segmentation using adaptive nonparametric data models and intensity-based Markov priors. In: MICCAI 2007, Part I, LNCS, vol 4791. Springer, Heidelberg, pp 883–890
Stawiaski J, Decenciere E, Bidault F (2008) Interactive liver tumor segmentation using graph-cuts and watershed. In: 3D segmentation in the clinic: a grand challenge
Tao Y, Lu L, Dewan M, Chen A, Corso J, Xuan J, Salganicoff M, Krishnan A (2009) Multi-level ground glass nodule detection and segmentation in CT lung images. In: MICCAI 2009, Part II, LNCS, vol 5762, pp 715–723
Tsai A, Yezzi A, Wells W, Tempany C, Tucker D, Fan A, Grimson W, Willsky A (2003) A shape based approach to the segmentation of medical imagery using level sets. IEEE Trans Med Imaging 22: 137–154
Vincent L, Soille P (1991) Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Trans Pattern Anal Mach Intell 13: 583–598
Wang J, Engelmann R, Li Q (2007) Segmentation of pulmonary nodules in three-dimensional CT images by use of a spiral-scanning technique. Med Phys 34: 4678–4689
Wels M, Zheng Y, Carneiro G, Huber M, Hornegger J, Comaniciu D (2009) Fast and robust 3D MRI brain structure segmentation. In: MICCAI 2009, Part II, LNCS, vol 5762, pp 575–583
Wong D, Liu J, Yin F, Tian Q, Xiong W, Zhou J, Qi Y, Han T, Venkatesh S, Wang S (2008) A semi-automated method for liver tumor segmentation based on 2D region growing with knowledge-based constraints. In: 3D Segmentation in the Clinic: a grand challenge
Yokota F, Okada T, Takao M, Sugano N, Tada Y, Sato Y (2009) Automated segmentation of the femur and pelvis from 3D CT data of diseased hip using hierarchical statistical shape model of joint structure. In: MICCAI 2009, Part II, LNCS, vol 5762, pp 811–818
Yushkevich P, Piven J, Hazlett H, Smith R, Ho S, Gee J, Gerig G (2006) User guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. NeuroImage 31: 1116–1128
Zheng Y, Barbu A, Georgescu B, Scheuering M, Comaniciu D (2008) Four-chamber heart modeling and automatic segmentation for 3D cardiac CT volumes using marginal space learning and steerable features. IEEE Trans Med Imaging 27: 1668–1681
Zhou J, Xiong W, Tian Q, Qi Y, Liu J, Leow W, Han T, Venkatesh S, Wang S (2008) Semi-automatic segmentation of 3D liver tumors from CT scans using voxel classification and propagational learning. In: 3D segmentation in the clinic: a grand challenge
Zhu J, Rosset S, Hastie T, Tibshirani R (2003) 1-norm support vector machines. In: Neural information processing systems. MIT Press, 2003, p 16
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Dakua, S.P. Performance divergence with data discrepancy: a review. Artif Intell Rev 40, 429–455 (2013). https://doi.org/10.1007/s10462-011-9289-8
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10462-011-9289-8