Abstract
As an important technique to solve distributed constraint optimization problems, Max-sum has drawn a lot of attention and successfully been deployed in real applications. Unfortunately, Max-sum fails to converge in cyclic problems and usually traverses states with low quality. Max-sum_AD and Max-sum_ADVP were proposed to guarantee the single phase convergence and the cross phase convergence respectively, and greatly improve the solution quality of Max-sum. However, the solution quality is closely related to the timing for starting value propagation in Max-sum_ADVP. In other words, low-quality initial assignments will lead to a poor result. In this paper, we prove that value propagation could restrict the exploration ability brought by Max-sum and eventually makes Max-sum_ADVP equivalent to a sequential greedy local search algorithm. For getting a balance between exploration and exploitation, several non-consecutive value propagation strategies are proposed to relax the restriction caused by value propagation: single-side value propagation which executes value propagation and Max-sum_AD in an interleaved way, probabilistic value propagation which performs value propagation stochastically and hybrid belief/value propagation where agents perform Max-sum_AD and value propagation in one round. We illustrate that agents in our algorithms can make decisions beyond local functions. Our empirical evaluations demonstrate the superiority of our methods over Max-sum and its variants. It also can be found that our methods are independent of the value propagation timing which is a major concern in Max-sum_ADVP.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Notes
We describe Max-sum as a minimization version to cope with the objective of DCOPs.
For sake of clarity and simplicity, we only show stable and unchanging outgoing messages here. In fact, nodes in Max-sum_AD perform concurrently and each node sends messages to its downstream neighbors every iteration. Besides, we also ignore the normalization to messages to make the trace more clear.
In fact, Standard Max-sum without personal preferences cannot solve graph-coloring problem for the same reason.
Since Lemma 1 has demonstrated that the global beliefs have no influence on the algorithm after enabling value propagation, we hereafter drop the global beliefs in response messages and only present exactly local functions in value propagation phases.
References
Aji, S. M., & McEliece, R. J. (2000). The generalized distributive law. IEEE Transactions on Information Theory, 46(2), 325–343.
Barabási, A. L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286(5439), 509–512.
Chen, Z., Deng, Y., & Wu, T. (2017). An iterative refined Max-sum_ad algorithm via single-side value propagation and local search. In Proceedings of the 16th conference on autonomous agents and multiagent systems (pp. 195–202). International Foundation for Autonomous Agents and Multiagent Systems.
Cohen, L., & Zivan, R. (2017). Max-sum revisited: The real power of damping. In Proceedings of the 16th conference on autonomous agents and multiagent systems (pp. 1505–1507). International Foundation for Autonomous Agents and Multiagent Systems.
Dechter, R. (1999). Bucket elimination: A unifying framework for reasoning. Artificial Intelligence, 113(1), 41–85.
Enembreck, F., & Barths, J. P. A. (2012). Distributed constraint optimization with mulbs: A case study on collaborative meeting scheduling. Journal of Network and Computer Applications, 35(1), 164–175.
Farinelli, A., Rogers, A., Petcu, A., & Jennings, N. R. (2008). Decentralised coordination of low-power embedded devices using the Max-sum algorithm. In Proceedings of the 7th international joint conference on autonomous agents and multiagent systems (Vol. 2, pp. 639–646). International Foundation for Autonomous Agents and Multiagent Systems.
Gershman, A., Meisels, A., & Zivan, R. (2009). Asynchronous forward bounding for distributed cops. Journal of Artificial Intelligence Research, 34, 61–88.
Hirayama, K., & Yokoo, M. (2005). The distributed breakout algorithms. Artificial Intelligence, 161(1), 89–115.
Katagishi, H., & Pearce, J. P. (2007). Kopt: Distributed dcop algorithm for arbitrary k-optima with monotonically increasing utility. In Ninth DCR workshop (CP-07).
Kschischang, F. R., Frey, B. J., & Loeliger, H. A. (2001). Factor graphs and the sum-product algorithm. IEEE Transactions on Information Theory, 47(2), 498–519.
Leite, A. R., Enembreck, F., & Barthès, J. P. A. (2014). Distributed constraint optimization problems: Review and perspectives. Expert Systems with Applications, 41(11), 5139–5157.
Litov, O., & Meisels, A. (2017). Forward bounding on pseudo-trees for dcops and adcops. Artificial Intelligence, 252, 83–99.
Maheswaran, R. T., Pearce, J. P., & Tambe, M. (2004). Distributed algorithms for dcop: A graphical-game-based approach. In ISCA PDCS (pp. 432–439).
Meisels, A., & Lavee, O. (2004). Using additional information in discsp search. In Distributed constraint reasoning workshop (DCR).
Modi, P. J., Shen, W. M., Tambe, M., & Yokoo, M. (2005). Adopt: Asynchronous distributed constraint optimization with quality guarantees. Artificial Intelligence, 161(1), 149–180.
Netzer, A., Grubshtein, A., & Meisels, A. (2012). Concurrent forward bounding for distributed constraint optimization problems. Artificial Intelligence, 193, 186–216.
Nguyen, D. T., Yeoh, W., & Lau, H. C. (2013). Distributed gibbs: A memory-bounded sampling-based dcop algorithm. In Proceedings of the 12th international conference on autonomous agents and multi-agent systems (pp. 167–174). International Foundation for Autonomous Agents and Multiagent Systems.
Okimoto, T., Joe, Y., Iwasaki, A., Yokoo, M., & Faltings, B. (2011). Pseudo-tree-based incomplete algorithm for distributed constraint optimization with quality bounds. In International conference on principles and practice of constraint programming (pp. 660–674). Springer.
Ottens, B., Dimitrakakis, C., & Faltings, B. (2017). Duct: An upper confidence bound approach to distributed constraint optimization problems. ACM Transactions on Intelligent Systems and Technology, 8(5), 69.
Pearce, J. P., & Tambe, M. (2007). Quality guarantees on k-optimal solutions for distributed constraint optimization problems. In International joint conference on artifical intelligence (pp. 1446–1451)
Petcu, A., & Faltings, B. (2005). Approximations in distributed optimization. In International conference on principles and practice of constraint programming (pp. 802–806). Springer.
Petcu, A., & Faltings, B. (2005). A scalable method for multiagent constraint optimization. In Proceedings of the 19th international joint conference on artificial intelligence (pp. 266–271).
Petcu, A., & Faltings, B. (2006). Odpop: An algorithm for open/distributed constraint optimization. In Proceedings of the 21st national conference on artificial intelligence (pp. 703–708). AAAI Press.
Petcu, A., & Faltings, B. (2007). Mb-dpop: A new memory-bounded algorithm for distributed optimization. In Proceedings of the 20th international joint conference on artifical intelligence (pp. 1452–1457). Morgan Kaufmann Publishers Inc.
Petcu, A., & Faltings, B. (2008). Distributed constraint optimization applications in power networks. International Journal of Innovations in Energy Systems and Power, 3(1), 1–12.
Rogers, A., Farinelli, A., Stranders, R., & Jennings, N. R. (2011). Bounded approximate decentralised coordination via the Max-sum algorithm. Artificial Intelligence, 175(2), 730–759.
Rollon, E., & Larrosa, J. (2012). Improved bounded Max-sum for distributed constraint optimization. In Proceedings of the 18th international conference on principles and practice of constraint programming (Vol. 7514, pp. 624–632). Berlin, Heidelberg: Springer.
Rollon, E., & Larrosa, J. (2014). Decomposing utility functions in bounded Max-sum for distributed constraint optimization. In International conference on principles and practice of constraint programming (pp. 646–654). Springer.
Steven, O., Roie, Z., & Aviv, N. (2016). Distributed breakout: Beyond satisfaction. In Proceedings of the twenty-fifth international joint conference on artificial intelligence (pp. 447–453).
Sultanik, E., Modi, P. J., & Regli, W. C. (2007). On modeling multiagent task scheduling as a distributed constraint optimization problem. In IJCAI (pp. 1531–1536).
Vinyals, M., Rodriguez-Aguilar, J. A., & Cerquides, J. (2009). Generalizing dpop: Action-gdl, a new complete algorithm for dcops. In Proceedings of The 8th international conference on autonomous agents and multiagent systems (Vol. 2, pp. 1239–1240). International Foundation for Autonomous Agents and Multiagent Systems.
Yeoh, W., Felner, A., & Koenig, S. (2010). Bnb-adopt: An asynchronous branch-and-bound dcop algorithm. Journal of Artificial Intelligence Research, 38, 85–133.
Yokoo, M., Durfee, E. H., Ishida, T., & Kuwabara, K. (1998). The distributed constraint satisfaction problem: Formalization and algorithms. IEEE Transactions on knowledge and data engineering, 10(5), 673–685.
Yu, Z., Chen, Z., He, J., & Deng, Y. (2017). A partial decision scheme for local search algorithms for distributed constraint optimization problems. In Proceedings of the 16th conference on autonomous agents and multiagent systems (pp. 187–194). International Foundation for Autonomous Agents and Multiagent Systems.
Zhang, W., Wang, G., Xing, Z., & Wittenburg, L. (2005). Distributed stochastic search and distributed breakout: properties, comparison and applications to constraint optimization problems in sensor networks. Artificial Intelligence, 161(1), 55–87.
Zilberstein, S. (1996). Using anytime algorithms in intelligent systems. Ai Magazine, 17(3), 73–83.
Zivan, R., Okamoto, S., & Peled, H. (2014). Explorative anytime local search for distributed constraint optimization. Artificial Intelligence, 212, 1–26.
Zivan, R., Parash, T., Cohen, L., Peled, H., & Okamoto, S. (2017). Balancing exploration and exploitation in incomplete min/max-sum inference for distributed constraint optimization. Autonomous Agents and Multi-Agent Systems,. https://doi.org/10.1007/s10458-017-9360-1.
Zivan, R., & Peled, H. (2012). Max/min-sum distributed constraint optimization through value propagation on an alternating dag. In Proceedings of the 11th international conference on autonomous agents and multiagent systems (Vol. 1, pp. 265–272). International Foundation for Autonomous Agents and Multiagent Systems.
Author information
Authors and Affiliations
Corresponding authors
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
The paper is an extension to our AAMAS paper [3]. Beside execution examples and an extension to Max-sum_ADSSVP, we also present three algorithms that can substantially suppress the cost fluctuation.
This research is funded by Chongqing Research Program of Basic Research and Frontier Technology (No. cstc2017jcyjAX0030), Fundamental Research Funds for the Central Universities (No. 2018CDXYJSJ0026) and Graduate Research and Innovation Foundation of Chongqing, China (Grant No. CYS18047).
Rights and permissions
About this article
Cite this article
Chen, Z., Deng, Y., Wu, T. et al. A class of iterative refined Max-sum algorithms via non-consecutive value propagation strategies. Auton Agent Multi-Agent Syst 32, 822–860 (2018). https://doi.org/10.1007/s10458-018-9395-y
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10458-018-9395-y