Estimates for coefficients in Jacobi series for functions with limited regularity by fractional calculus | Advances in Computational Mathematics Skip to main content
Log in

Estimates for coefficients in Jacobi series for functions with limited regularity by fractional calculus

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, optimal estimates on the decaying rates of Jacobi expansion coefficients are obtained by fractional calculus for functions with algebraic and logarithmic singularities. This is inspired by the fact that integer-order derivatives fail to deal with singularity of fractional-type, while fractional calculus can. To this end, we first introduce new fractional Sobolev spaces defined as the range of the \(L^p\)-space under the Riemann-Liouville fractional integral. The connection between these new spaces and classical fractional-order Sobolev spaces is then elucidated. Under this framework, the optimal decaying rate of Jacobi expansion coefficients is obtained, based on which the projection errors under different norms are given. This work is expected to introduce fractional calculus into traditional fields in approximation theory and to explore the possibility in solving classical problems by this ‘new’ tool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The code used in this work will be made available upon request to the authors.

References

  1. Babuška, I., Suri, M.: The \(p\) and \(h\)-\(p\) versions of the finite element method, basic principles and properties. SIAM Rev. 36(4), 578–632 (1994)

    Article  MathSciNet  Google Scholar 

  2. Bajlekova, E.G.: Fractional evolution equations in Banach spaces. Eindhoven University of Technology Ndhoven 14(8), 737–745 (2001)

    MathSciNet  Google Scholar 

  3. Bateman, H.: The solution of linear differential equations by means of definite integrals. Trans. Camb. Phil. Soc. 21, 171–196 (1909)

    Google Scholar 

  4. Boyd, J.P.: Chebyshev and Fourier Spectral Methods, 2nd edn. Dover Publication, Inc., New York (2001)

  5. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods: Fundamentals in Single Domains. Springer (2007)

  6. Caputo, M.: Linear models of dissipation whose Q is almost frequency independent II. Geophys. J. Int. 13(5), 529–539 (1967)

    Article  Google Scholar 

  7. Chen, S., Shen, J.: Enriched spectral methods and applications to problems with weakly singular solutions. J. Sci. Comput. 77(3), 1468–1489 (2018)

    Article  MathSciNet  Google Scholar 

  8. Chen, S., Shen, J., Wang, L.-L.: Generalized Jacobi functions and their applications to fractional differential equations. Math. Comp. 85(300), 1603–1638 (2016)

    Article  MathSciNet  Google Scholar 

  9. Duan, B., Jin, B., Lazarov, R., Pasciak, J., Zhou, Z.: Space-time Petrov–Galerkin FEM for fractional diffusion problems. Comput. Methods Appl. Math. 18(1), 1–20 (2018)

    Article  MathSciNet  Google Scholar 

  10. Duan, B., Zheng, Z., Cao, W.: Spectral approximation methods and error estimates for Caputo fractional derivative with applications to initial-value problems. J. Comput. Phys. 319, 108–128 (2016)

    Article  MathSciNet  Google Scholar 

  11. Fox, L., Parker, I.B.: Chebyshev Polynomials in Numerical Analysis. Oxford University Press (1968)

  12. Gottlieb, D., Orszag, S.A.: Numerical Analysis of Spectral Methods: Theory and Applications. SIAM (1977)

  13. Grisvard, P.: Elliptic problems in nonsmooth domains. SIAM (2011)

  14. Guo, B.Y., Shen, J., Wang, L.-L.: Optimal spectral-Galerkin methods using generalized Jacobi polynomials. J. Sci. Comput. 27, 305–322 (2006)

    Article  MathSciNet  Google Scholar 

  15. Guo, B.Y., Shen, J., Wang, L.-L.: Generalized Jacobi polynomials/functions and their applications. Appl. Numer. Math. 59(5), 1011–1028 (2009)

    Article  MathSciNet  Google Scholar 

  16. Hesthaven, J.S., Gottlieb, S., Gottlieb, D.: Spectral Methods for Time-dependent Problems. Cambridge University Press (2007)

  17. Jin, B., Zhou, Z.: Numerical Treatment and Analysis of Time-Fractional Evolution Equations. Springer Nature (2023)

  18. Karniadakis, G., Sherwin, S.: Spectral/hp Element Methods for Computational Fluid Dynamics. Oxford University Press (2005)

  19. Lischke, A., Zayernouri, M., Karniadakis, G.: A Petrov-Galerkin spectral method of linear complexity for fractional multiterm ODEs on the half line. SIAM J. Sci. Comput. 39(3), A922–A946 (2017)

    Article  MathSciNet  Google Scholar 

  20. Liu, W., Wang, L.-L., Li, H.: Optimal error estimates for Chebyshev approximations of functions with limited regularity in fractional Sobolev-type spaces. Math. Comp. 88(320), 2857–2895 (2019)

    Article  MathSciNet  Google Scholar 

  21. Liu, W., Wang, L.-L., Wu, B.: Optimal error estimates for Legendre expansions of singular functions with fractional derivatives of bounded variation. Adv. Comput. Math. 47(6), 1–32 (2021)

    Article  MathSciNet  Google Scholar 

  22. Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Academic press Inc, San Diego (1999)

    Google Scholar 

  23. Sakamoto, K., Yamamoto, M.: Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 382(1), 426–447 (2011)

    Article  MathSciNet  Google Scholar 

  24. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Science Publishers, New York (1993)

    Google Scholar 

  25. Shen, J., Tang, T., Wang, L.-L.: Spectral Methods: Algorithms, Analysis and Applications. Springer (2011)

  26. Sheng, C., Shen, J.: A space-time Petrov-Galerkin spectral method for time fractional diffusion equation. Numer. Math. Theor. Meth. Appl. 11(4), 854–876 (2018)

    Article  MathSciNet  Google Scholar 

  27. Szegö, G.: Orthogonal polynomials. American Mathematical Society (1939)

  28. Trefethen, L.N.: Approximation Theory and Approximation Practice. SIAM, Philadelphia (2013)

    Google Scholar 

  29. Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators. North-Holland Publishing Company (1978)

  30. Wang, H.: On the optimal estimates and comparison of Gegenbauer expansion coefficients. SIAM J. Numer. Anal. 54(3), 1557–1581 (2016)

    Article  MathSciNet  Google Scholar 

  31. Wang, H.: How much faster does the best polynomial approximation converge than Legendre projection? Numer. Math. 147(2), 481–503 (2021)

    Article  MathSciNet  Google Scholar 

  32. Wang, H.: Optimal rates of convergence and error localization of Gegenbauer projections. IMA J. Numer. Anal. 43, 2413–2444 (2023)

    Article  MathSciNet  Google Scholar 

  33. Wang, H., Xiang, S.: On the convergence rates of Legendre approximation. Math. Comp. 81(278), 861–877 (2012)

    Article  MathSciNet  Google Scholar 

  34. Xiang, S.: Convergence rates on spectral orthogonal projection approximation for functions of algebraic and logarithmatic regularities. SIAM J. Numer. Anal. 59(3), 1374–1398 (2021)

    Article  MathSciNet  Google Scholar 

  35. Xiang, S., Liu, G.: Optimal decay rates on the asymptotics of orthogonal polynomial expansions for functions of limited regularities. Numer. Math. 145(1), 117–148 (2020)

    Article  MathSciNet  Google Scholar 

  36. Xie, R., Wu, B., Liu, W.: Optimal error estimates for Chebyshev approximations of functions with endpoint singularities in fractional spaces. J. Sci. Comput. 96(3), 71 (2023)

    Article  MathSciNet  Google Scholar 

  37. Zayernouri, M., Karniadakis, G.: Fractional Sturm-Liouville eigen-problems: theory and numerical approximation. J. Comput. Phys. 252, 495–517 (2013)

    Article  MathSciNet  Google Scholar 

  38. Zayernouri, M., Karniadakis, G.: Fractional spectral collocation method. SIAM J. Sci. Comput. 36(1), A40–A62 (2014)

    Article  MathSciNet  Google Scholar 

  39. Zhao, X., Wang, L.-L., Xie, Z.: Sharp error bounds for Jacobi expansions and Gegenbauer-Gauss quadrature of analytic functions. SIAM J. Numer. Anal. 51(3), 1443–1469 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous referees for their valuable comments and suggestions for improvement of this paper.

Funding

This research was supported in part by the National Natural Science Foundation of China (Nos. 12201418, 12001280, 12271128 and 11971131) and the Natural Science Foundation of Heilongjiang Province of China (No. YQ2023A002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beiping Duan.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by: Bangti Jin

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, G., Liu, W. & Duan, B. Estimates for coefficients in Jacobi series for functions with limited regularity by fractional calculus. Adv Comput Math 50, 68 (2024). https://doi.org/10.1007/s10444-024-10159-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-024-10159-y

Keywords

Mathematics Subject Classification (2010)