A note on stability results for scattered data interpolation on Euclidean spheres | Advances in Computational Mathematics Skip to main content
Log in

A note on stability results for scattered data interpolation on Euclidean spheres

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

The present work considers the interpolation of the scattered data on the d-sphere by spherical polynomials. We prove bounds on the conditioning of the problem which rely only on the separation distance of the sampling nodes and on the degree of polynomials being used. To this end, we establish a packing argument for well separated sampling nodes and construct strongly localized polynomials on spheres. Numerical results illustrate our theoretical findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions. National Bureau of Standards, Washington, D.C. (1972)

    MATH  Google Scholar 

  2. Alpert, B.K., Rokhlin, V.: A fast algorithm for the evaluation of Legendre expansions. SIAM J. Sci. Stat. Comput. 12, 158–179 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  3. Ball, K.: Eigenvalues of Euclidean distance matrices. J. Approx. Theory 68, 74–82 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bass, R.F., Gröchenig, K.: Random sampling of multivariate trigonometric polynomials. SIAM J. Math. Anal. 36, 773–795 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  5. Driscoll, J.R., Healy, D., Rockmore, D.: Fast discrete polynomial transforms with applications to data analysis for distance transitive graphs. SIAM J. Comput. 26, 1066–1099 (1996)

    Article  MathSciNet  Google Scholar 

  6. Fasshauer, G.E., Schumaker, L.L.: Scattered data fitting on the sphere. In: Dahlen, M., Lyche, T., Schumaker, L.L. (eds.) Mathematical Methods for Curves and Surfaces II, pp. 117–166. Vanderbilt University Press, Nashville (1998)

    Google Scholar 

  7. Filbir, F., Themistoclakis, W.: Polynomial approximation on the sphere using scattered data. Math. Nachr. (2008, in press)

  8. Freeden, W., Gervens, T., Schreiner, M.: Constructive Approximation on the Sphere. Oxford University Press, Oxford (1998)

    MATH  Google Scholar 

  9. Keiner, J., Kunis, S., Potts, D.: Efficient reconstruction of functions on the sphere from scattered data. J. Fourier Anal. Appl. 13, 435–458 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  10. Kuijlaars, A.B.J., Saff, E.B., Sun, X.: On separation of minimal Riesz energy points on spheres in euclidean spaces. J. Comput. Appl. Math. 199, 172–180 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Kunis, S., Potts, D.: Stability results for scattered data interpolation by trigonometric polynomials. SIAM J. Sci. Comput. 29, 1403–1419 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  12. Levesley, J., Luo, Z., Sun, X.: Norm estimates of interpolation matrices and their inverses associated with strictly positive definite functions. Proc. Amer. Math. Soc. 127, 2127–2134 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  13. Mhaskar, H.N.: Polynomial operators and local smoothness classes on the unit interval. J. Approx. Theory 131, 243–267 (2004)

    MATH  MathSciNet  Google Scholar 

  14. Mhaskar, H.N., Narcowich, F.J., Ward, J.D.: Spherical Marcinkiewicz-Zygmund inequalities and positive quadrature. Math. Comp. 70, 1113–1130 (2001) (Corrigendum on the positivity of the quadrature weights in 71, 453–454 (2002))

    Article  MathSciNet  Google Scholar 

  15. Mhaskar, H.N., Prestin, J.: On the detection of singularities of a periodic function. Adv. Comput. Math. 12, 95–131 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  16. Mhaskar, H.N., Prestin, J.: Polynomial frames: a fast tour. In: Approximation theory XI: Gatlinburg 2004, Mod. Methods Math., pp. 287–318. Nashboro, Brentwood, TN (2005)

  17. Müller, C.: Spherical Harmonics. Springer, Aachen (1966)

    MATH  Google Scholar 

  18. Narcowich, F.J., Petrushev, P., Ward, J.D.: Localized tight frames on spheres. SIAM J. Math. Anal. 38, 574–594 (2006)

    Article  MathSciNet  Google Scholar 

  19. Narcowich, F.J., Sivakumar, N., Ward, J.D.: Stability results for scattered-data interpolation on euclidean spheres. Adv. Comput. Math. 8, 137–163 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  20. Narcowich, F.J., Ward, J.D.: Norms of inverses and condition numbers for matrices associated with scattered data. J. Approx. Theory 64, 69–94 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  21. Narcowich, F.J., Ward, J.D.: Scattered data interpolation on spheres: error estimates and locally supported basis functions. SIAM J. Math. Anal. 33, 1393–1410 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  22. Petrushev, P., Xu, Y.: Localized polynomial frames on the ball. Constr. Approx. 27, 121–148 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  23. Potts, D., Steidl, G., Tasche, M.: Fast algorithms for discrete polynomial transforms. Math. Comp. 67, 1577–1590 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  24. Reimer, M.: Multivariate Polynomial Approximation. Birkhäuser Verlag, Basel (2003)

    MATH  Google Scholar 

  25. Saff, E.B., Kuijlaars, A.B.J.: Distributing many points on a sphere. Math. Intelligencer 19, 5–11 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  26. Szegő, G.: Orthogonal Polynomials, 4th edn. American Mathematical Society, Providence (1975)

    Google Scholar 

  27. Wendland, H.: Scattered Data Approximation. Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Kunis.

Additional information

Communicated by Joe Ward.

Dedicated to Professor Manfred Tasche on the occasion of his 65th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kunis, S. A note on stability results for scattered data interpolation on Euclidean spheres. Adv Comput Math 30, 303–314 (2009). https://doi.org/10.1007/s10444-008-9069-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-008-9069-4

Keywords

Mathematics Subject Classifications (2000)

Navigation