Abstract
The present work considers the interpolation of the scattered data on the d-sphere by spherical polynomials. We prove bounds on the conditioning of the problem which rely only on the separation distance of the sampling nodes and on the degree of polynomials being used. To this end, we establish a packing argument for well separated sampling nodes and construct strongly localized polynomials on spheres. Numerical results illustrate our theoretical findings.
Similar content being viewed by others
References
Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions. National Bureau of Standards, Washington, D.C. (1972)
Alpert, B.K., Rokhlin, V.: A fast algorithm for the evaluation of Legendre expansions. SIAM J. Sci. Stat. Comput. 12, 158–179 (1991)
Ball, K.: Eigenvalues of Euclidean distance matrices. J. Approx. Theory 68, 74–82 (1992)
Bass, R.F., Gröchenig, K.: Random sampling of multivariate trigonometric polynomials. SIAM J. Math. Anal. 36, 773–795 (2004)
Driscoll, J.R., Healy, D., Rockmore, D.: Fast discrete polynomial transforms with applications to data analysis for distance transitive graphs. SIAM J. Comput. 26, 1066–1099 (1996)
Fasshauer, G.E., Schumaker, L.L.: Scattered data fitting on the sphere. In: Dahlen, M., Lyche, T., Schumaker, L.L. (eds.) Mathematical Methods for Curves and Surfaces II, pp. 117–166. Vanderbilt University Press, Nashville (1998)
Filbir, F., Themistoclakis, W.: Polynomial approximation on the sphere using scattered data. Math. Nachr. (2008, in press)
Freeden, W., Gervens, T., Schreiner, M.: Constructive Approximation on the Sphere. Oxford University Press, Oxford (1998)
Keiner, J., Kunis, S., Potts, D.: Efficient reconstruction of functions on the sphere from scattered data. J. Fourier Anal. Appl. 13, 435–458 (2007)
Kuijlaars, A.B.J., Saff, E.B., Sun, X.: On separation of minimal Riesz energy points on spheres in euclidean spaces. J. Comput. Appl. Math. 199, 172–180 (2007)
Kunis, S., Potts, D.: Stability results for scattered data interpolation by trigonometric polynomials. SIAM J. Sci. Comput. 29, 1403–1419 (2007)
Levesley, J., Luo, Z., Sun, X.: Norm estimates of interpolation matrices and their inverses associated with strictly positive definite functions. Proc. Amer. Math. Soc. 127, 2127–2134 (1999)
Mhaskar, H.N.: Polynomial operators and local smoothness classes on the unit interval. J. Approx. Theory 131, 243–267 (2004)
Mhaskar, H.N., Narcowich, F.J., Ward, J.D.: Spherical Marcinkiewicz-Zygmund inequalities and positive quadrature. Math. Comp. 70, 1113–1130 (2001) (Corrigendum on the positivity of the quadrature weights in 71, 453–454 (2002))
Mhaskar, H.N., Prestin, J.: On the detection of singularities of a periodic function. Adv. Comput. Math. 12, 95–131 (2000)
Mhaskar, H.N., Prestin, J.: Polynomial frames: a fast tour. In: Approximation theory XI: Gatlinburg 2004, Mod. Methods Math., pp. 287–318. Nashboro, Brentwood, TN (2005)
Müller, C.: Spherical Harmonics. Springer, Aachen (1966)
Narcowich, F.J., Petrushev, P., Ward, J.D.: Localized tight frames on spheres. SIAM J. Math. Anal. 38, 574–594 (2006)
Narcowich, F.J., Sivakumar, N., Ward, J.D.: Stability results for scattered-data interpolation on euclidean spheres. Adv. Comput. Math. 8, 137–163 (1998)
Narcowich, F.J., Ward, J.D.: Norms of inverses and condition numbers for matrices associated with scattered data. J. Approx. Theory 64, 69–94 (1991)
Narcowich, F.J., Ward, J.D.: Scattered data interpolation on spheres: error estimates and locally supported basis functions. SIAM J. Math. Anal. 33, 1393–1410 (2002)
Petrushev, P., Xu, Y.: Localized polynomial frames on the ball. Constr. Approx. 27, 121–148 (2008)
Potts, D., Steidl, G., Tasche, M.: Fast algorithms for discrete polynomial transforms. Math. Comp. 67, 1577–1590 (1998)
Reimer, M.: Multivariate Polynomial Approximation. Birkhäuser Verlag, Basel (2003)
Saff, E.B., Kuijlaars, A.B.J.: Distributing many points on a sphere. Math. Intelligencer 19, 5–11 (1997)
Szegő, G.: Orthogonal Polynomials, 4th edn. American Mathematical Society, Providence (1975)
Wendland, H.: Scattered Data Approximation. Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge (2005)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Joe Ward.
Dedicated to Professor Manfred Tasche on the occasion of his 65th birthday.
Rights and permissions
About this article
Cite this article
Kunis, S. A note on stability results for scattered data interpolation on Euclidean spheres. Adv Comput Math 30, 303–314 (2009). https://doi.org/10.1007/s10444-008-9069-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10444-008-9069-4