Approximation power of RBFs and their associated SBFs: a connection | Advances in Computational Mathematics
Skip to main content

Approximation power of RBFs and their associated SBFs: a connection

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

Error estimates for scattered data interpolation by “shifts” of a conditionally positive definite function (CPD) for target functions in its native space, which is its associated reproducing kernel Hilbert space (RKHS), have been known for a long time. Regardless of the underlying manifold, for example ℝn or S n, these error estimates are determined by the rate of decay of the Fourier transform (or Fourier series) of the CPD. This paper deals with the restriction of radial basis functions (RBFs), which are radial CPD functions on ℝn+1, to the unit sphere S n. In the paper, we first strengthen a result derived by two of us concerning an explicit representation of the Fourier–Legendre coefficients of the restriction in terms of the Fourier transform of the RBF. In addition, for RBFs that are related to completely monotonic functions, we derive a new integral representation for these coefficients in terms of the measure generating the completely monotonic function. These representations are then utilized to show that if an RBF has a native space equivalent to a Sobolev space H s(ℝn+1), then the restriction to S n has a native space equivalent to H s−1/2(S n). In addition, they are used to recover the asymptotic behavior of such coefficients for a wide variety of RBFs. Some of these were known earlier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.J.C. Baxter and S. Hubbert, Radial basis functions for the sphere, in: Proc. of the Internat. Conf. on Recent Progress in Multivariate Approximation, eds. W. Haussmann, K. Jetter and M. Reimer, Witten-Bommerholz, Germany, Internat. Series of Numerical Mathematics, Vol. 137 (Birkhäuser, Basel, 2001) pp. 33–47.

    Google Scholar 

  2. R. Brownlee and W. Light, Approximation orders for interpolation by surface splines to rough functions, IMA J. Numer. Anal. 24 (2004) 179–192.

    Article  MathSciNet  MATH  Google Scholar 

  3. W. zu Castell and F. Filbir, Radial basis functions and corresponding zonal series expansions on the sphere, J. Approx. Theory, to appear.

  4. J. Duchon, Sur l'erreur d'interpolation des fonctions de plusieurs variables par les D m-splines, RAIRO Anal. Numer. 12(4) (1978) 325–334.

    MathSciNet  MATH  Google Scholar 

  5. N. Dyn, F.J. Narcowich and J.D. Ward, Variational principles and Sobolev-type estimates for generalized interpolation on a Riemannian manifold, Constr. Approx. 15 (1999) 175–208.

    Article  MathSciNet  MATH  Google Scholar 

  6. G.E. Fasshauer and L.L. Schumaker, Scattered data fitting on the sphere, in: Mathematical Methods for Curves and Surfaces, Vol. II, eds. M. Daehlen, T. Lyche and L.L. Schumaker (Vanderbilt Univ. Press, Nashville, TN, 1998) pp. 117–166.

    Google Scholar 

  7. K. Guo, S. Hu and X. Sun, Conditionally positive definite functions and Laplace–Stieltjes integrals, J. Approx. Theory 74 (1993) 249–265.

    Article  MathSciNet  MATH  Google Scholar 

  8. I.M. Gel'fand and N.Ya. Vilenkin, Generalized Functions, Vol. 4 (Academic Press, New York/London, 1964).

    Google Scholar 

  9. P.B. Gilkey, The Index Theorem and the Heat Equation (Publ. of Perish, Boston, MA, 1974).

    MATH  Google Scholar 

  10. S. Hubbert, Radial basis function interpolation on the sphere, Ph.D. thesis, Imperial College, London (2002).

  11. S. Hubbert, On the accuracy of surface spline interpolation on the unit sphere, Manuscript.

  12. K. Jetter, J. Stockler and J.D. Ward, Error estimates for scattered data interpolation, Math. Comp. 68 (1999) 734–747.

    Article  MathSciNet  Google Scholar 

  13. J. Levesley and S. Hubbert, Radial basis functions for the sphere, in: Proc. of the Internat. Conf. on Recent Progress in Multivariate Approximation, eds. W. Haussmann, K. Jetter and M. Reimer, Witten-Bommerholz, Germany, Internat. Series of Numerical Mathematics, Vol. 137 (Birkhäuser, Basel, 2001) pp. 225–226.

    Google Scholar 

  14. J.L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications, Vol. I (Springer-Verlag, New York, 1972).

    MATH  Google Scholar 

  15. W.R. Madych and S.A. Nelson, Multivariate interpolation and conditionally positive definite functions II, Math. Comp. 54 (1990) 211–230.

    Article  MathSciNet  MATH  Google Scholar 

  16. T.M. Morton and M. Neamtu, Error bounds for solving pseudodifferential equations on spheres by collocation with zonal kernels, J. Approx. Theory 114 (2002) 242–268.

    Article  MathSciNet  MATH  Google Scholar 

  17. C. Müller, Spherical Harmonics, Lecture Notes in Mathematics, Vol. 17 (Springer-Verlag, Berlin, 1966).

    MATH  Google Scholar 

  18. F.J. Narcowich, Recent developments in approximation via positive definite functions, in: Approximation IX, Vol. II: Computational Aspects, eds. C.K. Chui and L.L. Schumaker (Vanderbilt Univ. Press, Nashville, TN, 1998) pp. 221–242.

    Google Scholar 

  19. F.J. Narcowich, R. Schaback and J.D. Ward, Approximation in Sobolev spaces by kernel expansions, J. Approx. Theory 114 (2002) 70–83.

    Article  MathSciNet  MATH  Google Scholar 

  20. F.J. Narcowich and J.D. Ward, Norm estimates for the inverses of a general class of scattered-data radial-function interpolation matrices, J. Approx. Theory 69 (1992) 84–109.

    Article  MathSciNet  MATH  Google Scholar 

  21. F.J. Narcowich and J.D. Ward, Scattered data interpolation on spheres: Error estimates and locally supported basis functions, SIAM J. Math. Anal. 33 (2002) 1393–1410.

    Article  MathSciNet  MATH  Google Scholar 

  22. F.J. Narcowich and J.D. Ward, Scattered data interpolation on ℝn: Error estimates for radial basis and band-limited functions, SIAM J. Math. Anal. 36 (2004) 284–300.

    Article  MathSciNet  MATH  Google Scholar 

  23. C. Odell and J. Levesley, Evaluation of some integrals arising from approximation on the sphere using radial basis functions, Numer. Funct. Anal. Optim. 23 (2002) 359–365.

    Article  MathSciNet  MATH  Google Scholar 

  24. A. Ron and X. Sun, Strictly positive definite functions on spheres in Euclidean spaces, Math. Comp. 65 (1996) 1513–1530.

    Article  MathSciNet  MATH  Google Scholar 

  25. I.J. Schoenberg, Positive definite functions on spheres, Duke Math. J. 9 (1942) 96–108.

    Article  MathSciNet  MATH  Google Scholar 

  26. E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces (Princeton Univ. Press, Princeton, NJ, 1971).

    MATH  Google Scholar 

  27. X. Sun, Conditionally positive definite functions and their application to multivariate interpolations, J. Approx. Theory 74 (1993) 159–180.

    Article  MathSciNet  MATH  Google Scholar 

  28. G.N. Watson, A Treatise on the Theory of Bessel Functions, 2nd ed. (Cambridge Univ. Press, London, 1966).

    MATH  Google Scholar 

  29. H. Wendland, Scattered Data Approximation, Cambridge Monographs on Applied and Computational Mathematics (Cambridge Univ. Press, Cambridge, 2005).

    MATH  Google Scholar 

  30. E.T. Whittaker and G.N. Watson, A Course of Modern Analysis, 4th ed. (Cambridge Univ. Press, Cambridge, UK, 1965).

    Google Scholar 

  31. Z. Wu and R. Schaback, Local error estimates for radial basis function interpolation of scattered data, IMA J. Numer. Anal. 13 (1993) 13–27.

    Article  MathSciNet  MATH  Google Scholar 

  32. Y. Xu and E.W. Cheney, Strictly positive definite functions on spheres, Proc. Amer. Math. Soc. 116 (1992) 977–981.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by R. Schaback

Joseph D. Ward: Francis J. Narcowich: Research supported by grant DMS-0204449 from the National Science Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Narcowich, F.J., Sun, X. & Ward, J.D. Approximation power of RBFs and their associated SBFs: a connection. Adv Comput Math 27, 107–124 (2007). https://doi.org/10.1007/s10444-005-7506-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-005-7506-1

Keywords

Mathematics subject classifications (2000)