Abstract
The acoustic wave equation is here discretized by conforming spectral elements in space and by the second order leap-frog method in time. For simplicity, homogeneous boundary conditions are considered. A stability analysis of the resulting method is presented, providing an upper bound for the allowed time step that is proportional to the size of the elements and inversely proportional to the square of their polynomial degree. A convergence analysis is also presented, showing that the convergence error decreases when the time step or the size of the elements decrease or when the polynomial degree increases. Several numerical results illustrating these results are presented.
Similar content being viewed by others
References
R.M. Alford, K.R. Kelly and D.M. Boore, Accuracy of finite-difference modeling of the acoustic wave equation, Geophys. 39 (1974) 834–842.
I. Babuška and M. Suri, The hp-version of the finite element method with quasiuniform meshes, RAIRO Math. Mod. Numer. Anal. 21 (1987) 199–238.
I. Babuška and M. Suri, The p and hp-version of the finite element method, basic principles and properties, SIAM Rev. 36(4) (1994) 578–632.
A. Bamberger, R. Glowinski and Q.H. Tran, A domain decomposition method for the acoustic wave equation with discontinuous coefficients and grid change, SIAM J. Numer. Anal. 34(2) (1997) 603–639.
C. Bernardi and Y. Maday, Approximations Spectrales de Problèmes aux Limites Elliptiques (Springer, Berlin, 1992).
C. Bernardi and Y. Maday, Spectral methods, in: Handbook of Numerical Analysis, Vol. V: Techniques of Scientific Computing (Part 2) (North-Holland, Amsterdam, 1997) pp. 209–485.
C. Canuto, M.Y. Hussaini, A. Quarteroni and T.A. Zang, Spectral Methods in Fluid Dynamics (Springer, Berlin, 1988).
F. Casadei, E. Gabellini, G. Fotia, F. Maggio and A. Quarteroni, A mortar spectral/finite element method for complex 2d and 3d elastodynamic problems, Comput. Methods Appl. Mech. Engrg. 191(45) (2002) 5119–5148.
R. Dautray and J.L. Lions, Analyse Mathématique et Calcul Numérique pour les Sciences et les Techniques (Masson, Paris, 1987).
M.O. Deville, P.F. Fischer and E.H. Mund, High-Order Methods for Incompressible Fluid Flow (Cambridge Univ. Press, Cambridge, 2002).
E. Faccioli, F. Maggio, A. Quarteroni and A. Tagliani, Spectral-domain decomposition for the solution of acoustic and elastic wave equations, Geophys. 61 (1996) 1160–1174.
D. Funaro, Spectral Elements for Transport-Dominated Equations (Springer, Berlin, 1997).
P. Gervasio, A. Quarteroni and F. Saleri, Spectral approximation for the Navier–Stokes equations, Adv. Math. Fluid Mech. (2000) 71–127.
P. Gervasio and F. Saleri, Stabilized spectral element approximation for the Navier–Stokes equations, Numer. Methods Partial Differential Equations 14 (1998) 115–141.
D. Givoli, Non-reflecting boundary conditions, J. Comput. Phys. 94(1) (1991) 1–29.
D. Gottlieb and J.S. Hesthaven, Spectral methods for hyperbolic problems, J. Comput. Appl. Math. 128(1/2) (2001) 83–131.
W. Gui and I. Babuška, The h, p and hp-version of the finite element method in one dimension, Parts 1–3, Numer. Math. 40 (1986) 577–683.
J.S. Hesthaven and T. Warburton, Nodal high-order methods on unstructured grids – I. Time-domain solution of Maxwell's equations, J. Comput. Phys. 181(1) (2002) 186–221.
F. Ihlenburg, Finite Element Analysis of Acoustic Scattering, Applied Mathematical Sciences, Vol. 132 (Springer, Berlin, 1998).
M.C. Junger and D. Feit, Sound, Structures and their Interaction (MIT Press, Cambridge, MA, 1986).
G.E. Karniadakis and S.J. Sherwin, Spectral/hp Element Methods for CFD (Oxford Univ. Press, Oxford, 1998).
K.R. Kelly, R.W. Ward, S. Treitel and R.M. Alford, Synthetic seismograms: A finite-difference approach, Geophys. 41 (1976) 2–27.
J.L. Lions and E. Magenes, Nonhomogeneous Boundary Value Problems and Applications (Springer, Berlin, 1972).
F. Maggio and A. Quarteroni, Acoustic wave propagation by spectral methods, East-West J. Numer. Math. 2 (1994) 129–150.
N.M. Newmark, A method of computation for structural dynamics, Proc. ASCE, J. Engrg. Mech. 85 (1959) 67–94.
A. Quarteroni, A. Tagliani and E. Zampieri, Generalized Galerkin approximations of elastic waves with absorbing boundary conditions, Comput. Methods Appl. Mech. Engrg. 163 (1998) 323–341.
A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations (Springer, Berlin, 1994).
P.A. Raviart and J.M. Thomas, Introduction à l'Analyse Numérique des Equations aux Dérivées Partielles (Masson, Paris, 1983).
C. Schwab, p- and hp-Finite Element Methods. Theory and Applications in Solid and Fluid Mechanics (Oxford Univ. Press, New York, 1998).
B. Szabó and I. Babuška, Finite Element Analysis (Wiley, New York, 1991).
J.H. Wilkinson, The Algebraic Eigenvalue Problem (Clarendon Press, Oxford, 1965).
E. Zampieri, On the condition number of some spectral collocation operators and their finite element preconditioning, J. Sci. Comput. 9(4) (1994) 419–443.
E. Zampieri and A. Tagliani, Numerical approximation of elastic waves equations by implicit spectral methods, Comput. Methods Appl. Mech. Engrg. 144 (1997) 33–50.
Author information
Authors and Affiliations
Additional information
Communicated by A. Zhou
Mathematics subject classifications (2000)
65M06, 65M70, 65M12
This work was supported by MIUR (PRIN 2001 “Metodi numerici avanzati per equazioni alle derivate parziali di interesse applicativo”).
Rights and permissions
About this article
Cite this article
Zampieri, E., Pavarino, L.F. An explicit second order spectral element method for acoustic waves. Adv Comput Math 25, 381–401 (2006). https://doi.org/10.1007/s10444-004-7626-z
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/s10444-004-7626-z