An explicit second order spectral element method for acoustic waves | Advances in Computational Mathematics Skip to main content
Log in

An explicit second order spectral element method for acoustic waves

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

The acoustic wave equation is here discretized by conforming spectral elements in space and by the second order leap-frog method in time. For simplicity, homogeneous boundary conditions are considered. A stability analysis of the resulting method is presented, providing an upper bound for the allowed time step that is proportional to the size of the elements and inversely proportional to the square of their polynomial degree. A convergence analysis is also presented, showing that the convergence error decreases when the time step or the size of the elements decrease or when the polynomial degree increases. Several numerical results illustrating these results are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.M. Alford, K.R. Kelly and D.M. Boore, Accuracy of finite-difference modeling of the acoustic wave equation, Geophys. 39 (1974) 834–842.

    Article  Google Scholar 

  2. I. Babuška and M. Suri, The hp-version of the finite element method with quasiuniform meshes, RAIRO Math. Mod. Numer. Anal. 21 (1987) 199–238.

    Google Scholar 

  3. I. Babuška and M. Suri, The p and hp-version of the finite element method, basic principles and properties, SIAM Rev. 36(4) (1994) 578–632.

    Article  MathSciNet  Google Scholar 

  4. A. Bamberger, R. Glowinski and Q.H. Tran, A domain decomposition method for the acoustic wave equation with discontinuous coefficients and grid change, SIAM J. Numer. Anal. 34(2) (1997) 603–639.

    Article  MathSciNet  MATH  Google Scholar 

  5. C. Bernardi and Y. Maday, Approximations Spectrales de Problèmes aux Limites Elliptiques (Springer, Berlin, 1992).

    MATH  Google Scholar 

  6. C. Bernardi and Y. Maday, Spectral methods, in: Handbook of Numerical Analysis, Vol. V: Techniques of Scientific Computing (Part 2) (North-Holland, Amsterdam, 1997) pp. 209–485.

    Google Scholar 

  7. C. Canuto, M.Y. Hussaini, A. Quarteroni and T.A. Zang, Spectral Methods in Fluid Dynamics (Springer, Berlin, 1988).

    MATH  Google Scholar 

  8. F. Casadei, E. Gabellini, G. Fotia, F. Maggio and A. Quarteroni, A mortar spectral/finite element method for complex 2d and 3d elastodynamic problems, Comput. Methods Appl. Mech. Engrg. 191(45) (2002) 5119–5148.

    Article  MathSciNet  Google Scholar 

  9. R. Dautray and J.L. Lions, Analyse Mathématique et Calcul Numérique pour les Sciences et les Techniques (Masson, Paris, 1987).

    Google Scholar 

  10. M.O. Deville, P.F. Fischer and E.H. Mund, High-Order Methods for Incompressible Fluid Flow (Cambridge Univ. Press, Cambridge, 2002).

    MATH  Google Scholar 

  11. E. Faccioli, F. Maggio, A. Quarteroni and A. Tagliani, Spectral-domain decomposition for the solution of acoustic and elastic wave equations, Geophys. 61 (1996) 1160–1174.

    Article  Google Scholar 

  12. D. Funaro, Spectral Elements for Transport-Dominated Equations (Springer, Berlin, 1997).

    MATH  Google Scholar 

  13. P. Gervasio, A. Quarteroni and F. Saleri, Spectral approximation for the Navier–Stokes equations, Adv. Math. Fluid Mech. (2000) 71–127.

  14. P. Gervasio and F. Saleri, Stabilized spectral element approximation for the Navier–Stokes equations, Numer. Methods Partial Differential Equations 14 (1998) 115–141.

    Article  MathSciNet  MATH  Google Scholar 

  15. D. Givoli, Non-reflecting boundary conditions, J. Comput. Phys. 94(1) (1991) 1–29.

    Article  MathSciNet  MATH  Google Scholar 

  16. D. Gottlieb and J.S. Hesthaven, Spectral methods for hyperbolic problems, J. Comput. Appl. Math. 128(1/2) (2001) 83–131.

    Article  MathSciNet  MATH  Google Scholar 

  17. W. Gui and I. Babuška, The h, p and hp-version of the finite element method in one dimension, Parts 1–3, Numer. Math. 40 (1986) 577–683.

    Article  Google Scholar 

  18. J.S. Hesthaven and T. Warburton, Nodal high-order methods on unstructured grids – I. Time-domain solution of Maxwell's equations, J. Comput. Phys. 181(1) (2002) 186–221.

    Article  MathSciNet  MATH  Google Scholar 

  19. F. Ihlenburg, Finite Element Analysis of Acoustic Scattering, Applied Mathematical Sciences, Vol. 132 (Springer, Berlin, 1998).

    Book  MATH  Google Scholar 

  20. M.C. Junger and D. Feit, Sound, Structures and their Interaction (MIT Press, Cambridge, MA, 1986).

    Google Scholar 

  21. G.E. Karniadakis and S.J. Sherwin, Spectral/hp Element Methods for CFD (Oxford Univ. Press, Oxford, 1998).

    Google Scholar 

  22. K.R. Kelly, R.W. Ward, S. Treitel and R.M. Alford, Synthetic seismograms: A finite-difference approach, Geophys. 41 (1976) 2–27.

    Article  Google Scholar 

  23. J.L. Lions and E. Magenes, Nonhomogeneous Boundary Value Problems and Applications (Springer, Berlin, 1972).

    Google Scholar 

  24. F. Maggio and A. Quarteroni, Acoustic wave propagation by spectral methods, East-West J. Numer. Math. 2 (1994) 129–150.

    MathSciNet  MATH  Google Scholar 

  25. N.M. Newmark, A method of computation for structural dynamics, Proc. ASCE, J. Engrg. Mech. 85 (1959) 67–94.

    Google Scholar 

  26. A. Quarteroni, A. Tagliani and E. Zampieri, Generalized Galerkin approximations of elastic waves with absorbing boundary conditions, Comput. Methods Appl. Mech. Engrg. 163 (1998) 323–341.

    Article  MathSciNet  MATH  Google Scholar 

  27. A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations (Springer, Berlin, 1994).

    MATH  Google Scholar 

  28. P.A. Raviart and J.M. Thomas, Introduction à l'Analyse Numérique des Equations aux Dérivées Partielles (Masson, Paris, 1983).

    Google Scholar 

  29. C. Schwab, p- and hp-Finite Element Methods. Theory and Applications in Solid and Fluid Mechanics (Oxford Univ. Press, New York, 1998).

    MATH  Google Scholar 

  30. B. Szabó and I. Babuška, Finite Element Analysis (Wiley, New York, 1991).

    Google Scholar 

  31. J.H. Wilkinson, The Algebraic Eigenvalue Problem (Clarendon Press, Oxford, 1965).

    MATH  Google Scholar 

  32. E. Zampieri, On the condition number of some spectral collocation operators and their finite element preconditioning, J. Sci. Comput. 9(4) (1994) 419–443.

    Article  MathSciNet  MATH  Google Scholar 

  33. E. Zampieri and A. Tagliani, Numerical approximation of elastic waves equations by implicit spectral methods, Comput. Methods Appl. Mech. Engrg. 144 (1997) 33–50.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by A. Zhou

Mathematics subject classifications (2000)

65M06, 65M70, 65M12

This work was supported by MIUR (PRIN 2001 “Metodi numerici avanzati per equazioni alle derivate parziali di interesse applicativo”).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zampieri, E., Pavarino, L.F. An explicit second order spectral element method for acoustic waves. Adv Comput Math 25, 381–401 (2006). https://doi.org/10.1007/s10444-004-7626-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-004-7626-z

Keywords

Navigation