Abstract
Spondyloarthritis (SpA) is a group of diseases primarily involving chronic inflammation of the spine and peripheral joints, as evaluated by magnetic resonance imaging (MRI). Considering the complexity of SpA, we performed a retrospective study to discover quantitative/radiomic MRI-based features correlated with SpA. We also investigated different fat-suppression MRI techniques to develop detection models for inflammatory sacroiliitis. Finally, these model results were compared with those of experienced musculoskeletal radiologists, and the concordance level was evaluated. Examinations of 46 consecutive patients were obtained using SPAIR (spectral attenuated inversion recovery) and STIR (short tau inversion recovery) MRI sequences. Musculoskeletal radiologists manually segmented the sacroiliac joints for further extraction of 230 MRI features from gray-level histogram/matrices and wavelet filters. These features were associated with sacroiliitis, SpA, and the current biomarkers of ESR (erythrocyte sedimentation rate), CRP (C-reactive protein), BASDAI (Bath Ankylosing Spondylitis Activity Index), BASFI (Bath Ankylosing Spondylitis Functional Index), and MASES (Maastricht Ankylosing Spondylitis Enthesis Score). The Mann–Whitney U test showed that the radiomic markers from both MRI sequences were associated with active sacroiliitis and with SpA and its axial and peripheral subtypes (p < 0.05). Spearman’s coefficient also identified a correlation between MRI markers and data from clinical practice (p < 0.05). Fat-suppression MRI models yielded performances that were statistically equivalent to those of specialists and presented strong concordance in identifying inflammatory sacroiliitis. SPAIR and STIR acquisition protocols showed potential for the evaluation of sacroiliac joints and the composition of a radiomic model to support the clinical assessment of SpA.
Similar content being viewed by others
Availability of Data and Material
Data used in this study have not been made publicly available as our institutional review board has not allowed yet.
Code Availability
All software used in this work are open-source and readily available in each institution website.
References
Rudwaleit MV, van der Heijde D, Landewé R, Akkoc N, Brandt J, Chou CT, Dougados M, Huang F, Gu J, Kirazli Y, van den Bosch F, Olivieri I, Roussou E, Scarpato S, SØrensen IJ, Valle-Oñate R, Weber U, Wei J, Sieper J: The Assessment of SpondyloArthritis International Society classification criteria for peripheral spondyloarthritis and for spondyloarthritis in general. Ann of the Rheum Dis, 70: 25-31, 2011
Faleiros MC, Nogueira-Barbosa MH, Dalto VF, Ferreira-Junior JR, Tenório APM, Luppino-Assad R, Louzada-Junior P, Rangayyan RM, Azevedo-Marques PM: Machine learning techniques for computer-aided classification of active inflammatory sacroiliitis in magnetic resonance imaging. Adv in Rheumatol, 60: 1-10, 2020.
Garg N, van den Bosch F, Deodhar A: The concept of spondyloarthritis: where are we now? Best Pract & Res Clin Rheumatol, 28: 663-672, 2014.
Wang R, Ward M: Epidemiology of axial spondyloarthritis: an update. Curr Opin in Rheumatol, 30: 37-143, 2018.
Sieper J, Rudwaleit M, Baraliakos X, Brandt J, Braun J, Burgos-Vargas R, Dougados M, Hermann KG, Landewé R, Maksymowych W, van der Heijde D: The Assessment of SpondyloArthritis international Society (ASAS) handbook: a guide to assess spondyloarthritis. Ann of the Rheum Dis, 68: ii1-ii44, 2009
Paramarta JE, Baeten D: Spondyloarthritis: from unifying concepts to improved treatment. Rheumatol, 53: 1547-1559, 2013.
Tenório APM, Faleiros MC, Ferreira-Junior JR, Dalto VF, Assad RL, Louzada-Junior P, Yoshida H, Nogueira-Barbosa MH, Azevedo-Marques PM: A study of MRI-based radiomics biomarkers for sacroiliitis and spondyloarthritis. Int J of Comput Assist Radiol and Surg, 15: 1737-1748, 2020.
Lambert R, Bakker P, van der Heijde D, Weber U, Rudwaleit M, Hermann KG, Sieper J, Baraliakos X, Bennett A, Braun J, Burgos-Vargas R, Dougados M, Pedersen SJ, Jurik A, Maksymowych WP, Marzo-Ortega H, Østergaard M, Poddubnyy D, Reijnierse M, van den Bosch F, van der Horst-Bruinsma I, Landewé R: Defining active sacroiliitis on MRI for classification of axial spondyloarthritis: update by the ASAS MRI working group. Ann of the Rheum Dis, 75: 1958-1963, 2016.
Dalto VF, Assad RL, Lorenzato MM, Crema MD, Louzada-Junior P, Nogueira-Barbosa MH: Comparison between STIR and T2-weighted SPAIR sequences in the evaluation of inflammatory sacroiliitis: diagnostic performance and signal-to-noise ratio. Radiol bras, 53: 223-228, 2020.
van der Heijde D, Ramiro S, Landewé R, Baraliakos X, van den Bosch F, Sepriano A, Regel A, Ciurea A, Dagfinrud H, Dougados M, van Gaalen F, Géher P, van der Horst-Bruinsma I, Inman R, Jongkees M, Kiltz U, Kvien T, Machado PM, Marzo-Ortega H, Molto A, Navarro-Compàn V, Ozgocmen S, Pimentel-Santos FM, Reveille J, Rudwaleit M, Sieper J, Sampaio-Barros P, Wiek D, Braun J: 2016 update of the ASAS-EULAR management recommendations for axial spondyloarthritis. Ann of the Rheum Dis, 76: 978-991, 2017.
Giardino A, Gupta S, Olson E, Sepulveda K, Lenchik L, Ivanidze J, Rakow-Penner R, Patel MJ, Subramaniam RM, Ganeshan D: Role of imaging in the era of precision medicine. Acad Radiol, 24: 639–649, 2017.
Santos M, Ferreira-Junior JR, Wada DT, Tenório APM, Nogueira-Barbosa MH, Azevedo-Marques PM: Artificial intelligence, machine learning, computer-aided diagnosis, and radiomics: advances in imaging towards to precision medicine. Radiol bras, 52: 387–396, 2019.
Ferreira-Junior JR, Koenigkam-Santos M, Tenório APM, Faleiros MC, Cipriano FEG, Fabro AT, Näppi J, Yoshida H, Azevedo-Marques PM: CT-based radiomics for prediction of histologic subtype and metastatic disease in primary malignant lung neoplasms. Int J of Comput Assist Radiol and Surg, 15: 163–172, 2020.
Tenorio APM, Faleiros MC, Ferreira-Junior JR, Dalto VF, Assad RL, Nogueira-Barbosa MH, Azevedo-Marques PM: Machine learning models to predict axial and peripheral spondyloarthritis: a comparative radiomic study between SPAIR and STIR MRI sequences. In: Comput Assist Radiol and Surg, Munique. Proceedings of the 34th International Congress and Exhibition, 2020.
Ferreira JR, Cardenas DAC, Moreno RA, Rebelo MFS, Krieger JE, Gutierrez MA: Novel chest radiographic biomarkers for COVID-19 using radiomic features associated with diagnostics and outcomes. J Digit Imaging, 34: 297-307, 2021.
Tomaszewski MR, Gillies RJ: The biological meaning of radiomic features. Radiology, 298: 505-516, 2021.
Ferreira-Junior JR, Oliveira MC, Azevedo-Marques PM: Integrating 3D image descriptors of margin sharpness and texture on a GPU-optimized similar pulmonary nodule retrieval engine. J of Supercomput, 73: 3451–3467, 2017.
Rudwaleit M, Jurik AG, Hermann KA, Landewé R, van der Heijde D, Baraliakos X, Marzo-Ortega H, Østergaard M, Braun J, Sieper J: Defining active sacroiliitis on magnetic resonance imaging (MRI) for classification of axial spondyloarthritis: a consensual approach by the ASAS/OMERACT MRI group. Ann of the Rheum Dis, 68: 1520-1527, 2009.
Kiltz U, van der Heijde D, Boonen A, Akkoc N, Bautista-Molano W, Burgos-Vargas R, Wei JC, Chiowchanwisawakit P, Dougados M, Duruoz MT, Elzorkany BK, Gaydukova I, Gensler LS, Gilio M, Grazio S, Gu J, Inman RD, Kim T, Navarro-Compan V, Marzo-Ortega H, Ozgocmen S, Santos FP, Schirmer M, Stebbings S, van den Bosch FE, van Tubergen A, Braun J: Measurement properties of the ASAS Health Index: results of a global study in patients with axial and peripheral spondyloarthritis. Ann of the Rheum Dis, 77: 1311-1317, 2018.
Yip S, Liu Y, Parmar C, Li Q, Liu S, Qu F, Ye Z, Gillies RJ, Aerts H: Associations between radiologist-defined semantic and automatically computed radiomic features in non-small cell lung cancer. Sci Rep, 7: 1-11, 2017.
Ferreira JR, Oliveira MC, Azevedo-Marques PM: Characterization of pulmonary nodules based on features of margin sharpness and texture. J Digit Imaging, 314: 451-463, 2018.
Chronaiou I, Thomsen RS, Huuse EM, Euceda LR, Pedersen SJ, Hoff M, Sitter B: Quantifying bone marrow inflammatory edema in the spine and sacroiliac joints with thresholding. BMC musculoskelet disord, 18: 497, 2017.
Maksymowych W, Inman R, Salonen D, Dhillon S, Williams M, Stone M, Conner-Spady B, Palsat J, Lambert RGW: Spondyloarthritis Research Consortium of Canada magnetic resonance imaging index for assessment of sacroiliac joint inflammation in ankylosing spondylitis. Arthritis Rheum, 53: 703–709, 2005.
Dalto VF, Assad RL, Crema MD, Louzada-Junior P, Nogueira-Barbosa MH: MRI assessment of bone marrow oedema in the sacroiliac joints of patients with spondyloarthritis: is the SPAIR T2w technique comparable to STIR? Eur Radiol, 27: 3669–3676, 2017.
Deodhar A, Rozycki M, Garges C, Shukla O, Arndt T, Grabowsky T, Park Y: Use of machine learning techniques in the development and refinement of a predictive model for early diagnosis of ankylosing spondylitis. Clin Rheumatol, 39: 975-982, 2020.
Zhao SS, Hong C, Cai T, Xu C, Huang J, Ermann J, Goodson NJ, Solomon DH, Cai T, Liao KP: Incorporating natural language processing to improve classification of axial spondyloarthritis using electronic health records. Rheumatol, 59: 1059-1065, 2020.
Walsh JA, Shao Y, Leng J, He T, Teng C, Redd D, Burningham QTZZ, Clegg DO, Sauer BC: Identifying axial spondyloarthritis in electronic medical records of US veterans. Arthritis Care & Res, 69: 1414-1420, 2017.
Zwanenburg A, Vallières M, Abdalah MA, Aerts H, Andrearczyk V, Apte A, Ashrafinia S, Bakas S, Beukinga RJ, Boellaard R, Bogowicz M, Boldrini L, Buvat I, Cook GJR, Davatzikos C, Depeursinge A, Desseroit M, Dinapoli N, Dinh CV, Echegaray S, Naqa I, Fedorov AY, Gatta R, Gillies R, Goh V, Götz M, Guckenberger M, Ha S, Hatt M, Isensee F, Lambin P, Leger S, Leijenaar R, Lenkowicz J, Lippert F, Losnegård A, Maier-Hein K, Morin O, Müller H, Napel S, Nioche C, Orlhac F, Pati S, Pfaehler E, Rahmim A, Rao A, Scherer J, Siddique M, Sijtsema N, Fernandez J, Spezi E, Steenbakkers R, Tanadini-Lang S, Thorwarth D, Troost E, Upadhaya T, Valentini V, van Dijk L, van Griethuysen J, van Velden F, Whybra P, Richter C, Löck S: The Image Biomarker Standardization Initiative: standardized quantitative radiomics for high-throughput image-based phenotyping. Radiol, 295: 328-338, 2020.
Funding
This study was funded by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001, Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) [grants numbers 2016/17078–0 and 2014/50889–7]. Coordenação de Aperfeiçoamento de Pessoal de Nível Superior,001,Paulo Mazzoncini de Azevedo-Marques,Conselho Nacional de Desenvolvimento Científico e Tecnológico,Fundação de Amparo à Pesquisa do Estado de São Paulo,2016/17078–0,Paulo Mazzoncini de Azevedo-Marques,2014/50889–7,Paulo Mazzoncini de Azevedo-Marques
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Ethics Approval
All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee (Comitê de Ética em Pesquisa do Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo, reference number 2.356.447).
Consent to Participate
This work was a retrospective cohort study approved by our institutional review board that waived the requirement to obtain informed consent of the patients.
Consent for Publication
This work data has been approved by our institutional review board that waived the requirement to obtain informed consent of the patients.
Competing Interests
The authors declare no competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Tenório, A.P.M., Ferreira-Junior, J.R., Dalto, V.F. et al. Radiomic Quantification for MRI Assessment of Sacroiliac Joints of Patients with Spondyloarthritis. J Digit Imaging 35, 29–38 (2022). https://doi.org/10.1007/s10278-021-00559-7
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10278-021-00559-7