Hausdorff Stability of Persistence Spaces | Foundations of Computational Mathematics
Skip to main content

Hausdorff Stability of Persistence Spaces

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

Multidimensional persistence modules do not admit a concise representation analogous to that provided by persistence diagrams for real-valued functions. However, there is no obstruction for multidimensional persistent Betti numbers to admit one. Therefore, it is reasonable to look for a generalization of persistence diagrams concerning those properties that are related only to persistent Betti numbers. In this paper, the persistence space of a vector-valued continuous function is introduced to generalize the concept of persistence diagram in this sense. The main result is its stability under function perturbations: Any change in vector-valued functions implies a not greater change in the Hausdorff distance between their persistence spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S. Biasotti, X. Bai, B. Bustos, A. Cerri, D. Giorgi, L. Li, M. Mortara, I. Sipiran, S. Zhang, and M. Spagnuolo, SHREC’12 Track: Stability on Abstract Shapes, Eurographics Workshop on 3D Object Retrieval (M. Spagnuolo, M. Bronstein, A. Bronstein, and A. Ferreira, eds.), Eurographics Association, 2012, pp. 101–107.

  2. S. Biasotti, A. Cerri, D. Giorgi, and M. Spagnuolo, Phog: Photometric and geometric functions for textured shape retrieval, Computer Graphics Forum 32 (2013), no. 5, 13–22.

    Article  Google Scholar 

  3. F. Cagliari, B. Di Fabio, and M. Ferri, One-dimensional reduction of multidimensional persistent homology, Proc. Amer. Math. Soc. 138 (2010), no. 8, 3003–3017.

    Article  MathSciNet  MATH  Google Scholar 

  4. G. Carlsson and A. Zomorodian, The theory of multidimensional persistence, Discrete & Computational Geometry 42 (2009), no. 1, 71–93.

    Article  MathSciNet  MATH  Google Scholar 

  5. G. Carlsson, A. Zomorodian, A. Collins, and L. J. Guibas, Persistence barcodes for shapes, International Journal of Shape Modeling 11 (2005), no. 2, 149–187.

    Article  MATH  Google Scholar 

  6. N. Cavazza, M. Ethier, P. Frosini, T. Kaczynski, and C. Landi, Comparison of persistent homologies for vector functions: From continuous to discrete and back, Computers & Mathematics with Applications 66 (2013), no. 4, 560 – 573.

    Article  MathSciNet  Google Scholar 

  7. A. Cerri, B. Di Fabio, M. Ferri, P. Frosini, and C. Landi, Betti numbers in multidimensional persistent homology are stable functions, Mathematical Methods in the Applied Sciences 36 (2013), no. 12, 1543–1557.

    Article  MathSciNet  MATH  Google Scholar 

  8. A. Cerri and P. Frosini, Necessary conditions for discontinuities of multidimensional persistent Betti numbers, Mathematical Methods in the Applied Sciences 38 (2015), no. 4, 617–629.

  9. A. Cerri and C. Landi, The persistence space in multidimensional persistent homology, Discrete Geometry for Computer Imagery (R. Gonzalez-Diaz, M.-J. Jimenez, and B. Medrano, eds.), Lecture Notes in Computer Science, vol. 7749, Springer Berlin Heidelberg, 2013, pp. 180–191.

  10. F. Chazal, D. Cohen-Steiner, M. Glisse, L.J. Guibas, and S.Y. Oudot, Proximity of persistence modules and their diagrams, SCG ’09: Proceedings of the 25th annual symposium on Computational geometry (New York, NY, USA), ACM, 2009, pp. 237–246.

  11. D. Cohen-Steiner, H. Edelsbrunner, and J. Harer, Stability of persistence diagrams, Discrete Comput. Geom. 37 (2007), no. 1, 103–120.

    Article  MathSciNet  MATH  Google Scholar 

  12. B. Di Fabio and C. Landi, Persistent homology and partial similarity of shapes, Pattern Recognition Letters 33 (2012), no. 11, 1445 – 1450.

    Article  Google Scholar 

  13. H. Edelsbrunner and J. Harer, Computational topology: An introduction, American Mathematical Society, Providence, RI, 2010.

    Google Scholar 

  14. S. Eilenberg and N. Steenrod, Foundations of algebraic topology, Princeton University Press, Princeton, NJ, 1952.

    MATH  Google Scholar 

  15. P. Frosini and C. Landi, Size functions and formal series, Appl. Algebra Engrg. Comm. Comput. 12 (2001), no. 4, 327–349.

    Article  MathSciNet  MATH  Google Scholar 

  16. P. Frosini and M. Mulazzani, Size homotopy groups for computation of natural size distances, Bulletin of the Belgian Mathematical Society Simon Stevin 6 (1999), no. 3, 455–464.

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Work carried out within the activity of ARCES “E. De Castro”, University of Bologna, under the auspices of INdAM-GNSAGA. Andrea Cerri was partially supported by the CNR research activity ICT.P10.009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Landi.

Additional information

Communicated by Gunnar Carlsson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cerri, A., Landi, C. Hausdorff Stability of Persistence Spaces. Found Comput Math 16, 343–367 (2016). https://doi.org/10.1007/s10208-015-9244-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-015-9244-1

Keywords

Mathematics Subject Classification