Abstract
Today, along with the development of the Internet, the number of malicious software, or malware, distributed especially for monetary profits, is exponentially increasing, and malware authors are developing malware variants using various automated tools and methods. Automated tools and methods may reuse some modules to develop malware variants, so these reused modules can be used to classify malware or to identify malware families. Therefore, similarities may exist among malware variants can be analyzed and used for malware variant detections and the family classification. This paper proposes a new malware family classification method by converting binary files into images and entropy graphs. The experimental results show that the proposed method can effectively distinguish malware families.
Similar content being viewed by others
References
Christodorescu, M., Jha, S.: Testing malware detectors. ACM SIGSOFT Softw. Eng. Notes 29(4), 34–44 (2004)
Moser, A., Kruegel, C., Kirda, E.: Limits of static analysis for malware detection. In: Computer Security Applications Conference, 2007. ACSAC 2007. Twenty-Third Annual 2007, pp. 421–430. IEEE
Willems, C., Holz, T., Freiling, F.: Toward automated dynamic malware analysis using cwsandbox. IEEE Secur. Priv. 5(2), 32–39 (2007)
Jang, J., Brumley, D., Venkataraman, S.: Bitshred: feature hashing malware for scalable triage and semantic analysis. In: Proceedings of the 18th ACM Conference on Computer and Communications Security 2011, pp. 309–320. ACM
Dinaburg, A., Royal, P., Sharif, M., Lee, W.: Ether: malware analysis via hardware virtualization extensions. In: Proceedings of the 15th ACM Conference on Computer and Communications Security 2008, pp. 51–62. ACM
Christodorescu, M., Jha, S., Seshia, S.A., Song, D., Bryant, R.E.: Semantics-aware malware detection. In: Security and Privacy, 2005 IEEE Symposium on 2005, pp. 32–46. IEEE
Cesare, S., Xiang, Y.: A fast flowgraph based classification system for packed and polymorphic malware on the endhost. In: Advanced Information Networking and Applications (AINA), 2010 24th IEEE International Conference on 2010, pp. 721–728. IEEE
Chowdhury, G.: Introduction to Modern Information Retrieval. Facet publishing (2010)
Shang, S., Zheng, N., Xu, J., Xu, M., Zhang, H.: Detecting malware variants via function-call graph similarity. In: Malicious and Unwanted Software (MALWARE), 2010 5th International Conference on 2010, pp. 113–120. IEEE
Abou-Assaleh, T., Cercone, N., Keselj, V., Sweidan, R.: Detection of new malicious code using n-grams signatures. In: Proceedings of Second Annual Conference on Privacy, Security and Trust 2004, pp. 193–196
Santos, I., Brezo, F., Nieves, J., Penya, Y.K., Sanz, B., Laorden, C., Bringas, P.G.: Idea: Opcode-sequence-based malware detection. In: Engineering Secure Software and Systems. pp. 35–43. Springer, Berlin (2010)
Bilar, D.: Opcodes as predictor for malware. Int. J. Electron. Secur. Digit. Forensics 1(2), 156–168 (2007)
Han, K.S., Kim, S.-R., Im, E.G.: Instruction frequency-based malware classification method. INFORMATION Int. Interdiscip. J. 15(7), 2973–2984 (2012)
Egele, M., Kruegel, C., Kirda, E., Yin, H., Song, D.: Dynamic spyware analysis. In: Usenix Annual Technical Conference 2007
Nair, V.P., Jain, H., Golecha, Y.K., Gaur, M.S., Laxmi, V.: MEDUSA: MEtamorphic malware dynamic analysis using signature from API. In: Proceedings of the 3rd International Conference on Security of Information and Networks 2010, pp. 263–269. ACM
Miao, Q.-G., Wang, Y., Cao, Y., Zhang, X.-G., Liu, Z.-L.: APICapture-a tool for monitoring the behavior of malware. In: Advanced Computer Theory and Engineering (ICACTE), 2010 3rd International Conference on 2010, pp. V4–390-V394-394. IEEE
Fredrikson, M., Jha, S., Christodorescu, M., Sailer, R., Yan, X.: Synthesizing near-optimal malware specifications from suspicious behaviors. In: Security and Privacy (SP), 2010 IEEE Symposium on 2010, pp. 45–60. IEEE
Trinius, P., Holz, T., Gobel, J., Freiling, F.C.: Visual analysis of malware behavior using treemaps and thread graphs. In: Visualization for Cyber Security, 2009. VizSec 2009. 6th International Workshop on 2009, pp. 33–38. IEEE
Saxe, J., Mentis, D., Greamo, C.: Visualization of shared system call sequence relationships in large malware corpora. In: Proceedings of the Ninth International Symposium on Visualization for Cyber, Security 2012, pp. 33–40. ACM
Conti, G., Dean, E., Sinda, M., Sangster, B.: Visual Reverse engineering of binary and data files. In: Visualization for Computer Security, pp. 1–17. Springer, Berlin (2008)
Anderson, B., Storlie, C., Lane, T.: Improving malware classification: bridging the static/dynamic gap. In: Proceedings of the 5th ACM Workshop on Security and Artificial Intelligence 2012, pp. 3–14. ACM
Nataraj, L., Karthikeyan, S., Jacob, G., Manjunath, B.: Malware images: visualization and automatic classification. In: Proceedings of the 8th International Symposium on Visualization for Cyber, Security 2011, p. 4. ACM
Torralba, A., Murphy, K.P., Freeman, W.T., Rubin, M.A.: Context-based vision system for place and object recognition. In: Computer Vision, 2003. Proceedings. Ninth IEEE International Conference on 2003, pp. 273–280. IEEE
Oliva, A., Torralba, A.: Modeling the shape of the scene: a holistic representation of the spatial envelope. Int. J. Comput. Vis. 42(3), 145–175 (2001)
Siagian, C., Itti, L.: Rapid biologically-inspired scene classification using features shared with visual attention. IEEE Trans. Pattern Anal. Mach. Intell. 29(2), 300–312 (2007)
Nataraj, L., Yegneswaran, V., Porras, P., Zhang, J.: A comparative assessment of malware classification using binary texture analysis and dynamic analysis. In: Proceedings of the 4th ACM Workshop on Security and Artificial Intelligence 2011, pp. 21–30. ACM
Baysa, D., Low, R.M., Stamp, M.: Structural entropy and metamorphic malware. J. Comput. Virol. Hack. Tech. 9, 179–192 (2013)
Conti, G., Bratus, S., Shubina, A., Lichtenberg, A., Ragsdale, R., Perez-Alemany, R., Sangster, B., Supan, M.: A Visual Study of Primitive Binary Fragment Types. White Paper, Black Hat USA (2010)
Kapur, J., Sahoo, P.K., Wong, A.: A new method for gray-level picture thresholding using the entropy of the histogram. Comput. Vis. Gr. Image Process. 29(3), 273–285 (1985)
Strelkov, V.: A new similarity measure for histogram comparison and its application in time series analysis. Pattern Recognit. Lett. 29(13), 1768–1774 (2008)
VxHeaven. http://vx.netlux.org/index.html
Kaspersky Lab. http://www.kaspersky.com
Gnuplot. http://www.gnuplot.info
Karampatziakis, N., Stokes, J.W., Thomas, A., Marinescu, M.: Using file relationships in malware classification. In: Detection of Intrusions and Malware, and Vulnerability Assessment. pp. 1–20. Springer, Berlin (2013)
Acknowledgments
This research was supported by the MSIP (Ministry of Science, ICT and Future Planning), Korea, under the ITRC (Information Technology Research Center) support program (NIPA-2014-H0301-14-1022) supervised by the NIPA (National IT Industry Promotion Agency).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Han, K.S., Lim, J.H., Kang, B. et al. Malware analysis using visualized images and entropy graphs. Int. J. Inf. Secur. 14, 1–14 (2015). https://doi.org/10.1007/s10207-014-0242-0
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10207-014-0242-0