Data stream classification with novel class detection: a review, comparison and challenges | Knowledge and Information Systems
Skip to main content

Advertisement

Data stream classification with novel class detection: a review, comparison and challenges

  • Survey Paper
  • Published:
Knowledge and Information Systems Aims and scope Submit manuscript

Abstract

Developing effective and efficient data stream classifiers is challenging for the machine learning community because of the dynamic nature of data streams. As a result, many data stream learning algorithms have been proposed during the past decades and achieve great success in various fields. This paper aims to explore a specific type of challenge in learning evolving data streams, called concept evolution (emergence of novel classes). Concept evolution indicates that the underlying patterns evolve over time, and new patterns (classes) may emerge at any time in streaming data. Therefore, data stream classifiers with emerging class detection have received increasing attention in recent years due to the practical values in many real-world applications. In this article, we provide a comprehensive overview of the existing works in this line of research. We discuss and analyze various aspects of the proposed algorithms for data stream classification with concept evolution detection and adaptation. Additionally, we discuss the potential application areas in which these techniques can be used. We also provide a detailed overview of evaluation measures and datasets used in these studies. Finally, we describe the current research challenges and future directions for data stream classification with novel class detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. https://archive.ics.uci.edu/ml/datasets.php.

  2. http://users.rowan.edu/~polikar/nse.html.

  3. https://moa.cms.waikato.ac.nz/datasets/.

  4. http://mlkd.csd.auth.gr/concept_drift.html.

  5. http://www.cse.fau.edu/xqzhu/stream.html.

  6. https://lucykuncheva.co.uk/EPSRC_simulation_framework/changing_environments_stage1a.htm.

  7. http://www.cs.bham.ac.uk/+minkull/opensource.html.

  8. https://github.com/vlosing/driftDatasets.

  9. http://github.com/gditzler/ConceptDriftResources.

  10. http://roveri.faculty.polimi.it/software-and-datasets.

  11. http://dbpedia.org/page/Concept_drift.

  12. http://moa.cms.waikato.ac.nz/.

  13. http://jmlr.org/papers/v16/morales15a.html.

References

  1. Abdallah ZS, Gaber MM, Srinivasan B, Krishnaswamy S (2016) Anynovel: detection of novel concepts in evolving data streams. Evol Syst 7(2):73–93

    Article  Google Scholar 

  2. Abrol S, Khan L, Khadilkar V, Thuraisingham B, Cadenhead T (2012) Design and implementation of snodsoc: Novel class detection for social network analysis. In: Proceedings of international conference on intelligence and security informatics, pp 215–220

  3. Aggarwal CC (2015) Outlier analysis. In: Proceedings of data mining. Springer, pp 237–263

  4. Aggarwal CC, Han J, Wang J, Yu PS (2003) A framework for clustering evolving data streams. In: Proceedings of 29th international conference on very large data bases, pp 81–92

  5. Ahmad S, Lavin A, Purdy S, Agha Z (2017) Unsupervised real-time anomaly detection for streaming data. Neurocomputing 262:134–147 (Online Real-Time Learning Strategies for Data Streams)

    Article  Google Scholar 

  6. Ahmadi Z, Kramer S (2018) Modeling recurring concepts in data streams: a graph-based framework. Knowl Inf Syst 55(1):15–44

    Article  Google Scholar 

  7. Al-Behadili H, Grumpe A, Dopp C, Wöhler C (2015) Proc. incremental learning and novelty detection of gestures using extreme value theory. In: IEEE International conference on computer graphics, vision and information security, pp 169–174

  8. Al-Khateeb T, Masud MM, Al-Naami KM, Seker SE, Mustafa AM, Khan L, Trabelsi Z, Aggarwal C, Han J (2016) Recurring and novel class detection using class-based ensemble for evolving data stream. IEEE Trans Knowl Data Eng 28(10):2752–2764

    Article  Google Scholar 

  9. Al-Khateeb T, Masud MM, Khan L, Aggarwal C, Han J, Thuraisingham B (2012) Stream classification with recurring and novel class detection using class-based ensemble. In: Proceedings of IEEE 12th international conference on data mining, pp 31–40

  10. Albertini MK, de Mello RF (2007) A self-organizing neural network for detecting novelties. In: Proceedings of ACM symposium on applied computing, pp 462–466

  11. Alippi C, Roveri M (2008) Just-in-time adaptive classifiers—Part i: detecting nonstationary changes. IEEE Trans Neural Netw 19(7):1145–1153

    Article  Google Scholar 

  12. Alnaami K, Ayoade G, Siddiqui A, Ruozzi N, Khan L, Thuraisingham B (2015) P2v: Effective website fingerprinting using vector space representations. In: Proceedings of IEEE symposium series on computational intelligence, pp 59–66

  13. Anguita D, Ghio A, Oneto L, Parra X, Reyes-Ortiz JL (2012) Human activity recognition on smartphones using a multiclass hardware friendly support vector machine. In: Proceedings of 4th international workshop on ambient assisted living and home care, pp 216 – 223

  14. Araujo F, Hamlen KW, Biedermann S, Katzenbeisser S (2014) From patches to honey-patches: Lightweight attacker misdirection, deception, and disinformation. In: Proceedings of ACM SIGSAC conference on computer and communications security, pp 942–953

  15. Arthur D, Vassilvitskii S (2007) K-means++: The advantages of careful seeding. In: Proceedings of 18th annual ACM-SIAM symposium on discrete algorithms, pp 1027–1035

  16. Attar V, Pingale G (2014) Novel class detection in data streams. In: Proceedings of 2nd international conference on soft computing for problem solving, pp 683–690

  17. Bahri M, Bifet A, Gama J, Gomes HM, Maniu S (2021) Data stream analysis: foundations, major tasks and tools. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, p e1405

  18. Bahri M, Gomes HM, Bifet A, Maniu S (2020) CS-ARF: compressed adaptive random forests for evolving data stream classification. In: 2020 international joint conference on neural networks, IJCNN, pp 1–8

  19. Bandaragoda TR, Ting KM, Albrecht D, Liu FT, Zhu Y, Wells JR (2018) Isolation-based anomaly detection using nearest-neighbor ensembles. Comput Intell 34(4):968–998

    Article  MathSciNet  Google Scholar 

  20. Barddal JP, Loezer L, Enembreck F, Lanzuolo R (2020) Lessons learned from data stream classification applied to credit scoring. Expert Syst Appl 162:113899

    Article  Google Scholar 

  21. Bartkowiak AM (2011) Anomaly, novelty, one-class classification: a comprehensive introduction. Int J Comput Inf Syst Ind Manag Appl 3(1):61–71

  22. Ben-Hur A (2008) Support vector clustering. Scholarpedia 3(6):5187

    Article  Google Scholar 

  23. Beyene AA, Welemariam T, Persson M, Lavesson N (2015) Improved concept drift handling in surgery prediction and other applications. Knowl Inf Syst 44(1):177–196

    Article  Google Scholar 

  24. Bicego M, Figueiredo MA (2009) Soft clustering using weighted one-class support vector machines. Pattern Recogn 42(1):27–32

    Article  MATH  Google Scholar 

  25. Bifet A, Holmes G, Kirkby R, Pfahringer B (2010) Moa: Massive online analysis. J Mach Learn Res 11:1601–1604

    Google Scholar 

  26. Bifet A, Holmes G, Pfahringer B (2010) Leveraging bagging for evolving data streams. In: Proceedings of European conference on machine learning and knowledge discovery in databases, pp 135–150

  27. Blackard JA, Dean DJ (1999) Comparative accuracies of artificial neural networks and discriminant analysis in predicting forest cover types from cartographic variables. Comput Electron Agric 24(3):131–151

    Article  Google Scholar 

  28. Boldt M, Borg A, Ickin S, Gustafsson J (2020) Anomaly detection of event sequences using multiple temporal resolutions and markov chains. Knowl Inf Syst 62(2):669–686

    Article  Google Scholar 

  29. Bouguelia M, Belaid Y, Belaid A (2014) Efficient active novel class detection for data stream classification. In: Proceedings of 22nd international conference on pattern recognition, pp 2826–2831

  30. Bouguelia MR, Nowaczyk S, Payberah AH (2018) An adaptive algorithm for anomaly and novelty detection in evolving data streams. Data Min Knowl Disc 32(6):1597–1633

    Article  MathSciNet  Google Scholar 

  31. Breunig MM, Kriegel HP, Ng RT, Sander J (2000) Lof: Identifying density-based local outliers. In: Proceedings of ACM SIGMOD international conference on management of data, pp 93–104

  32. Burkhardt S, Kramer S (2019) Multi-label classification using stacked hierarchical Dirichlet processes with reduced sampling complexity. Knowl Inf Syst 59(1):93–115

    Article  Google Scholar 

  33. Cai X, Zhao P, Ting K, Mu X, Jiang Y (2019) Nearest neighbor ensembles: An effective method for difficult problems in streaming classification with emerging new classes. In: Proceedings of IEEE international conference on data mining, pp 970–975

  34. Camci F, Chinnam RB (2008) General support vector representation machine for one-class classification of non-stationary classes. Pattern Recogn 41(10):3021–3034

    Article  MATH  Google Scholar 

  35. Campello R, Hruschka E (2006) A fuzzy extension of the silhouette width criterion for cluster analysis. Fuzzy Sets Syst 157(21):2858–2875

    Article  MathSciNet  MATH  Google Scholar 

  36. Cao F, Ester M, Qian W, Zhou A (2006) Density-based clustering over an evolving data stream with noise. In: Proceedings of SIAM conference on data mining, pp 328–339

  37. Castro-Cabrera P, Castellanos-Dominguez G, Mera C, Franco-Marín L, Orozco-Alzate M (2021) Adaptive classification using incremental learning for seismic-volcanic signals with concept drift. J Volcanol Geoth Res 413:107211

    Article  Google Scholar 

  38. Cejnek M, Bukovsky I (2018) Concept drift robust adaptive novelty detection for data streams. Neurocomputing 309:46–53

    Article  Google Scholar 

  39. Chandola V, Banerjee A, Kumar V (2007) Outlier detection: a survey. ACM Comput Surv 14:15

    Google Scholar 

  40. Chandola V, Banerjee A, Kumar V (2009) Anomaly detection: a survey. ACM Comput Surv 41(3):15

    Article  Google Scholar 

  41. Coletta LF, Ponti M, Hruschka ER, Acharya A, Ghosh J (2019) Combining clustering and active learning for the detection and learning of new image classes. Neurocomputing 358:150–165

    Article  Google Scholar 

  42. Cristiani AL, da Silva TP, de Arruda Camargo H (2020) A fuzzy approach for classification and novelty detection in data streams under intermediate latency. In: Cerri R, Prati RC (eds) Intelligent systems–9th Brazilian conference, BRACIS, Lecture Notes in Computer Science, vol 12320, pp 171–186

  43. Da Q, Yu Y, Zhou ZH (2014) Learning with augmented class by exploiting unlabeled data. In: Proceedings of 28th AAAI conference on artificial intelligence, pp 1760–1766

  44. da Silva TP, Schick L, de Abreu Lopes P, de Arruda Camargo H (2018) A fuzzy multiclass novelty detector for data streams. In: Proceedings of IEEE international conference on fuzzy systems, pp 1–8

  45. da Silva TP, Urban GA, d. A. Lopes P, d. A. Camargo H (2017) A fuzzy variant for on-demand data stream classification. In: Proceedings of Brazilian conference on intelligent systems, pp 67–72

  46. Dal Pozzolo A, Boracchi G, Caelen O, Alippi C, Bontempi G (2018) Credit card fraud detection: a realistic modeling and a novel learning strategy. IEEE Trans Neural Netw Learn Syst 29(8):3784–3797

    Article  Google Scholar 

  47. De Francisci Morales G, Bifet A (2015) Samoa: Scalable advanced massive online analysis. J Mach Learn Res 16(1):149–153

    Google Scholar 

  48. Deng C, Yuan W, Tao Z, Cao J (2016) Detecting novel class for sensor-based activity recognition using reject rule. In: Proceedings of 9th international conference on internet and distributed computing systems, pp 34–44

  49. Din SU, Shao J (2020) Exploiting evolving micro-clusters for data stream classification with emerging class detection. Inf Sci 507:404–420

    Article  Google Scholar 

  50. Din SU, Shao J, Kumar J, Ali W, Liu J, Ye Y (2020) Online reliable semi-supervised learning on evolving data streams. Inf Sci 525:153–171

    Article  MathSciNet  MATH  Google Scholar 

  51. Ding S, Liu X, Zhang M (2018) Imbalanced augmented class learning with unlabeled data by label confidence propagation. In: Proceedings of IEEE international conference on data mining, pp 79–88

  52. Ditzler G, Muhlbaier MD, Polikar R (2010) Incremental learning of new classes in unbalanced datasets: Learn++.udnc. In: Proceedings of 9th international workshop on multiple classifier systems, pp 33–42

  53. Ditzler G, Rosen G, Polikar R (2013) Incremental learning of new classes from unbalanced data. In: Proceedings of international joint conference on neural networks, pp 1–8

  54. Domingos P, Hulten G (2000) Mining high-speed data streams. In: Proceedings of 6th ACM SIGKDD international conference on knowledge discovery and data mining, pp 71–80

  55. Dries A, Rückert U (2009) Adaptive concept drift detection. Stat Anal Data Min 2(56):311–327

    Article  MathSciNet  Google Scholar 

  56. Ducange P, Pecori R, Mezzina P (2018) A glimpse on big data analytics in the framework of marketing strategies. Soft Comput 22(1):325–342

    Article  Google Scholar 

  57. Elwell R, Polikar R (2011) Incremental learning of concept drift in nonstationary environments. IEEE Trans Neural Netw 22(10):1517–1531

    Article  Google Scholar 

  58. Erfani SM, Rajasegarar S, Leckie C (2011) An efficient approach to detecting concept-evolution in network data streams. In: Proceedings of Australasian telecommunication networks and applications conference, pp 1–7

  59. Ester M, Kriegel HP, Sander J, Xu X (1996) A density-based algorithm for discovering clusters a density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings 2nd international conference on knowledge discovery and data mining, pp 226–231

  60. Faria ER, Gama Ja, Carvalho ACPLF (2013) Novelty detection algorithm for data streams multi-class problems. In: Proceedings of 28th annual ACM symposium on applied computing, pp 795–800

  61. Faria ER, Gonçalves IJCR, de Carvalho ACPLF, Gama J (2016) Novelty detection in data streams. Artif Intell Rev 45(2):235–269

    Article  Google Scholar 

  62. de Faria ER, Goncalves IR, Gama J, de Leon Ferreira ACP et al (2015) Evaluation of multiclass novelty detection algorithms for data streams. IEEE Trans Knowl Data Eng 27(11):2961–2973

    Article  Google Scholar 

  63. de Faria ER, Ponce de Leon Ferreira Carvalho AC, Gama J (2016) Minas: multiclass learning algorithm for novelty detection in data streams. Data Min Knowl Discov 30(3):640–680

    Article  MathSciNet  Google Scholar 

  64. Farid DM, Rahman CM (2012) Novel class detection in concept-drifting data stream mining employing decision tree. In: Proceedings of 7th international conference on electrical and computer engineering, pp 630–633

  65. Farid DM, Zhang L, Hossain A, Rahman CM, Strachan R, Sexton G, Dahal K (2013) An adaptive ensemble classifier for mining concept drifting data streams. Expert Syst Appl 40(15):5895–5906

    Article  Google Scholar 

  66. Folino G, Pisani FS, Pontieri L (2020) A gp-based ensemble classification framework for time-changing streams of intrusion detection data. Soft Comput 24(23):17541–17560

    Article  Google Scholar 

  67. Gama J (2010) Knowledge discovery from data streams. Chapman and Hall/CRC, London

    Book  MATH  Google Scholar 

  68. Gama J, Žliobaitė I, Bifet A, Pechenizkiy M, Bouchachia A (2014) A survey on concept drift adaptation. ACM Comput Surv 46(4):44:1-44:37

    Article  MATH  Google Scholar 

  69. Gao Y, Chandra S, Li Y, Khan L, Thuraisingham BM (2020) Saccos: A semi-supervised framework for emerging class detection and concept drift adaption over data streams. IEEE Trans Knowl Data Eng. https://doi.org/10.1109/TKDE.2020.2993193

    Article  Google Scholar 

  70. Garcia KD, de Faria ER, de Sá CR, Mendes-Moreira J, Aggarwal CC, de Carvalho AC, Kok JN (2019) Ensemble clustering for novelty detection in data streams. In: Proceedings of international conference on discovery science. Springer, pp 460–470

  71. Garcia KD, Poel M, Kok JN, de Carvalho ACPLF (2019) Online clustering for novelty detection and concept drift in data streams. In: Proceedings of 19th conference on artificial intelligence, pp 448–459

  72. Ghomeshi H, Gaber MM, Kovalchuk Y (2020) A non-canonical hybrid metaheuristic approach to adaptive data stream classification. Future Gener Comput Syst 102:127–139

    Article  Google Scholar 

  73. Goldenberg I, Webb GI (2019) Survey of distance measures for quantifying concept drift and shift in numeric data. Knowl Inf Syst 60(2):591–615

    Article  Google Scholar 

  74. Gomes HM, Barddal JP, Enembreck F, Bifet A (2017) A survey on ensemble learning for data stream classification. ACM Comput Surv 50(2):23:1-23:36

    Google Scholar 

  75. Haque A, Khan L, Baron M (2015) Semi supervised adaptive framework for classifying evolving data stream. In: Proceedings of 19th Pacific-Asia conference on advances in knowledge discovery and data mining, pp 383–394

  76. Haque A, Khan L, Baron M (2016) Sand: Semi-supervised adaptive novel class detection and classification over data stream. In: Proceedings of 30th AAAI conference on artificial intelligence, pp 1652–1658

  77. Haque A, Khan L, Baron M, Thuraisingham B, Aggarwal C (2016) Efficient handling of concept drift and concept evolution over stream data. In: Proceedings of IEEE 32nd international conference on data engineering, pp 481–492

  78. Harries M, cse tr, UN, Wales NS (1999) Splice-2 comparative evaluation: electricity pricing. Technical report

  79. Hayat MZ, Hashemi MR (2010) A dct based approach for detecting novelty and concept drift in data streams. In: Proceedings of international conference on soft computing and pattern recognition, pp 373–378

  80. Hosseini MJ, Gholipour A, Beigy H (2016) An ensemble of cluster-based classifiers for semi-supervised classification of non-stationary data streams. Knowl Inf Syst 46(3):567–597

    Article  Google Scholar 

  81. Hu C, Chen Y, Hu L, Peng X (2018) A novel random forests based class incremental learning method for activity recognition. Pattern Recogn 78:277–290

    Article  Google Scholar 

  82. Huang Z (1998) Extensions to the k-means algorithm for clustering large data sets with categorical values. Data Min Knowl Disccov 2(3):283–304

    Article  Google Scholar 

  83. Iosifidis V, Ntoutsi E (2020) Sentiment analysis on big sparse data streams with limited labels. Knowl Inf Syst 62(4):1393–1432

    Article  Google Scholar 

  84. Islam MR (2014) Recurring and novel class detection in concept-drifting data streams using class-based ensemble. In: Proceedings of 18th Pacific-Asia conference on advances in knowledge discovery and data mining, pp 425–436

  85. Júnior JC, Faria E, Silva J, Gama J, Cerri R (2019) Novelty detection for multi-label stream classification. In: Proceedings of 8th IEEE Brazilian conference on intelligent systems, pp 144–149

  86. Katakis I, Tsoumakas G, Vlahavas I (2008) Multilabel text classification for automated tag suggestion. In: Proceedings of ECML/PKDD workshop on discovery challenge

  87. Katakis I, Tsoumakas G, Vlahavas I (2010) Tracking recurring contexts using ensemble classifiers: an application to email filtering. Knowl Inf Syst 22(3):371–391

    Article  Google Scholar 

  88. Khezri S, Tanha J, Ahmadi A, Sharifi A (2021) A novel semi-supervised ensemble algorithm using a performance-based selection metric to non-stationary data streams. Neurocomputing 442:125–145

    Article  Google Scholar 

  89. Krawczyk B, Stefanowski J, Wozniak M (2015) Data stream classification and big data analytics. Neurocomputing 150:238–239

    Article  Google Scholar 

  90. Krawczyk B, Woźniak M (2013) Incremental learning and forgetting in one-class classifiers for data streams. In: Proceedings of 8th international conference on computer recognition systems, pp 319–328

  91. Kumar J, Shao J, Uddin S, Ali W (2020) An online semantic-enhanced Dirichlet model for short text stream clustering. In: Jurafsky D, Chai J, Schluter N, Tetreault JR (eds) Proceedings of the 58th annual meeting of the association for computational linguistics. Association for Computational Linguistics, pp 766–776

  92. Kuzborskij I, Orabona F, Caputo B (2013) From n to n+1: multiclass transfer incremental learning. In: Proceedings of IEEE conference on computer vision and pattern recognition, pp 3358–3365

  93. Lazzaretti AE, Tax DMJ, Neto HV, Ferreira VH (2016) Novelty detection and multi-class classification in power distribution voltage waveforms. Expert Syst Appl 45:322–330

    Article  Google Scholar 

  94. Li MJ, Ng MK, Cheung Y, Huang JZ (2008) Agglomerative fuzzy k-means clustering algorithm with selection of number of clusters. IEEE Trans Knowl Data Eng 20(11):1519–1534

    Article  Google Scholar 

  95. Li X, Zhou Y, Jin Z, Yu P, Zhou S (2020) A classification and novel class detection algorithm for concept drift data stream based on the cohesiveness and separation index of mahalanobis distance. J Electr Comput Eng 2020:4027423:1-4027423:8

    Google Scholar 

  96. Liberty E (2013) Simple and deterministic matrix sketching. In: Proc. 19th ACM SIGKDD international conference on knowledge discovery and data mining, pp 581–588

  97. Liu FT, Ting KM, hua Zhou Z (2008) Isolation forest. In: Proceedings of 8th IEEE international conference on data mining, pp 413–422

  98. Losing V, Hammer B, Wersing H (2015) Interactive online learning for obstacle classification on a mobile robot. In: Proceedings of international joint conference on neural networks, pp 1–8

  99. Losing V, Hammer B, Wersing H (2018) Tackling heterogeneous concept drift with the self-adjusting memory (SAM). Knowl Inf Syst 54(1):171–201

    Article  Google Scholar 

  100. Lu J, Liu A, Dong F, Gu F, Gama J, Zhang G (2019) Learning under concept drift: a review. IEEE Trans Knowl Data Eng 31(12):2346–2363. https://doi.org/10.1109/TKDE.2018.2876857

    Article  Google Scholar 

  101. Lughofer E, Weigl E, Heidl W, Eitzinger C, Radauer T (2015) Integrating new classes on the fly in evolving fuzzy classifier designs and their application in visual inspection. Appl Soft Comput 35(C):558–582

    Article  Google Scholar 

  102. Markou M, Singh S (2003) Novelty detection: a review—part 1: statistical approaches. Signal Process 83(12):2481–2497

    Article  MATH  Google Scholar 

  103. Markou M, Singh S (2003) Novelty detection: a review—part 2: neural network based approaches. Signal Process 83(12):2499–2521

    Article  MATH  Google Scholar 

  104. Masud M, Gao J, Khan L, Han J, Thuraisingham BM (2011) Classification and novel class detection in concept-drifting data streams under time constraints. IEEE Trans Knowl Data Eng 23(6):859–874

    Article  Google Scholar 

  105. Masud MM, Al-Khateeb TM, Khan L, Aggarwal C, Gao J, Han J, Thuraisingham B (2011) Detecting recurring and novel classes in concept-drifting data streams. In: Proceedings of IEEE 11th international conference on data mining, pp 1176–1181

  106. Masud MM, Chen Q, Gao J, Khan L, Han J, Thuraisingham B (2010) Classification and novel class detection of data streams in a dynamic feature space. In: Proceedings of machine learning and knowledge discovery in databases. Springer, Berlin, Heidelberg, pp 337–352

  107. Masud MM, Chen Q, Khan L, Aggarwal C, Gao J, Han J, Thuraisingham B (2010) Addressing concept-evolution in concept-drifting data streams. In: Proceedings of IEEE international conference on data mining, pp 929–934

  108. Masud MM, Chen Q, Khan L, Aggarwal CC, Gao J, Han J, Srivastava A, Oza NC (2013) Classification and adaptive novel class detection of feature-evolving data streams. IEEE Trans Knowl Data Eng 25(7):1484–1497

    Article  Google Scholar 

  109. Masud MM, Gao J, Khan L, Han J, Thuraisingham B (2009) Integrating novel class detection with classification for concept-drifting data streams. In: Proceedings of joint European conference on machine learning and knowledge discovery in databases, pp 79–94

  110. Masud MM, Gao J, Khan L, Han J, Thuraisingham B (2010) Classification and novel class detection in data streams with active mining. In: Proceedings of 14th Pacific-Asia conference on advances in knowledge discovery and data mining, pp 311–324

  111. Miao Y, Qiu L, Chen H, Zhang J, Wen Y (2013) Novel class detection within classification for data streams. In: Proceedings of 10th international symposium on neural networks, pp 413–420

  112. Zhang M-L, Zhou Z-H (2006) Multilabel neural networks with applications to functional genomics and text categorization. IEEE Trans Knowl Data Eng 18(10):1338–1351

    Article  Google Scholar 

  113. Minku LL, White AP, Yao X (2010) The impact of diversity on online ensemble learning in the presence of concept drift. IEEE Trans Knowl Data Eng 22(5):730–742

    Article  Google Scholar 

  114. Mohamad S, Sayed-Mouchaweh M, Bouchachia A (2018) Active learning for classifying data streams with unknown number of classes. Neural Netw 98:1–15

    Article  Google Scholar 

  115. Mohamad S, Sayed-Mouchaweh M, Bouchachia A (2020) Online active learning for human activity recognition from sensory data streams. Neurocomputing 390:341–358

    Article  Google Scholar 

  116. Mu X, Ting KM, Zhou Z (2017) Classification under streaming emerging new classes: a solution using completely-random trees. IEEE Trans Knowl Data Eng 29(8):1605–1618

    Article  Google Scholar 

  117. Mu X, Zhu F, Du J, Lim EP, Zhou ZH (2017) Streaming classification with emerging new class by class matrix sketching. In: Proceedings of 31st AAAI conference on artificial intelligence

  118. Mu X, Zhu F, Liu Y, Lim EP, Zhou ZH (2018) Social stream classification with emerging new labels. In: Proceedings of 22nd Pacific-Asia conference on advances in knowledge discovery and data mining, pp 16–28

  119. Muhlbaier MD, Topalis A, Polikar R (2009) \(\text{ Learn}^{++}\).nc: combining ensemble of classifiers with dynamically weighted consult-and-vote for efficient incremental learning of new classes. IEEE Trans Neural Netw 20(1):152–168

    Article  Google Scholar 

  120. Mustafa AM, Ayoade G, Al-Naami K, Khan L, Hamlen KW, Thuraisingham B, Araujo F (2017) Unsupervised deep embedding for novel class detection over data stream. In: Proceedings of IEEE international conference on big data, pp 1830–1839

  121. Narasimhamurthy A, Kuncheva LI (2007) A framework for generating data to simulate changing environments. In: Proceedings of 25th international multi-conference: artificial intelligence and applications, pp 384–389

  122. Nguyen H, Woon Y, Ng WK (2015) A survey on data stream clustering and classification. Knowl Inf Syst 45(3):535–569

    Article  Google Scholar 

  123. Park CH, Shim H (2007) On detecting an emerging class. In: Proceedings of IEEE international conference on granular computing, pp 265–265

  124. Park CH, Shim H (2010) Detection of an emerging new class using statistical hypothesis testing and density estimation. Int J Pattern Recogn Artif Intell 24:1–14

    Article  Google Scholar 

  125. Parker B, Mustafa AM, Khan L (2012) Novel class detection and feature via a tiered ensemble approach for stream mining. In: Proceedings of IEEE 24th international conference on tools with artificial intelligence, vol 1, pp 1171–1178

  126. Parker BS, Khan L (2013) Rapidly labeling and tracking dynamically evolving concepts in data streams. In: Proceedings of IEEE 13th international conference on data mining workshops, pp 1161–1164

  127. Parker BS, Khan L (2015) Detecting and tracking concept class drift and emergence in non-stationary fast data streams. In: Proceedings of 29th AAAI conference on artificial intelligence, pp 2908–2913

  128. Parveen P, McDaniel N, Hariharan VS, Thuraisingham B, Khan L (2012) Unsupervised ensemble based learning for insider threat detection. In: Proceedings of international conference on privacy, security, risk and trust and international conference on social computing, pp 718–727

  129. Patcha A, Park JM (2007) An overview of anomaly detection techniques: existing solutions and latest technological trends. Comput Netw 51(12):3448–3470

    Article  Google Scholar 

  130. Pimentel MA, Clifton DA, Clifton L, Tarassenko L (2014) A review of novelty detection. Signal Process 99:215–249

    Article  Google Scholar 

  131. Razavi-Far R, Hallaji E, Saif M, Ditzler G (2019) A novelty detector and extreme verification latency model for nonstationary environments. IEEE Trans Industr Electron 66(1):561–570

    Article  Google Scholar 

  132. Rodriguez A, Laio A (2014) Clustering by fast search and find of density peaks. Science 344(6191):1492–1496

    Article  Google Scholar 

  133. Rusiecki A (2012) Robust neural network for novelty detection on data streams. In: Proceedings of 11th international conference on artificial intelligence and soft computing, pp 178–186

  134. Scholkopf B, Smola AJ (2001) Learning with kernels: support vector machines, regularization, optimization, and beyond. MIT Press, Cambridge, MA

    Google Scholar 

  135. Seroussi Y, Bohnert F, Zukerman I (2011) Personalised rating prediction for new users using latent factor models. In: Proceedings of 22nd ACM conference on hypertext and hypermedia, pp 47–56

  136. Shao J, Ahmadi Z, Kramer S (2014) Prototype-based learning on concept-drifting data streams. In: Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 412–421

  137. Shao J, Huang F, Yang Q, Luo G (2018) Robust prototype-based learning on data streams. IEEE Trans Knowl Data Eng 30(5):978–991

    Article  Google Scholar 

  138. Siahroudi SK, Moodi PZ, Beigy H (2018) Detection of evolving concepts in non-stationary data streams: a multiple kernel learning approach. Expert Syst Appl 91:187–197

    Article  Google Scholar 

  139. Sokolova M, Lapalme G (2009) A systematic analysis of performance measures for classification tasks. Inf Process Manag 45(4):427–437

    Article  Google Scholar 

  140. Souza VM, Silva DF, Gama J, Batista GE (2015) Data stream classification guided by clustering on nonstationary environments and extreme verification latency. In: Proceedings of SIAM international conference on data mining, pp 873–881

  141. Spinosa EJ, Carvalho ACPLF (2005) Support vector machines for novel class detection in bioinformatics. Genet Mol Res 4(3):608–615

    Google Scholar 

  142. Spinosa EJ, de Leon F. de Carvalho AP, Gama Ja (2007) Olindda: A cluster-based approach for detecting novelty and concept drift in data streams. In: Proceedings of ACM symposium on applied computing, pp 448–452

  143. Spinosa EJ, de Leon F. de Carvalho AP, Gama Ja (2008) Cluster-based novel concept detection in data streams applied to intrusion detection in computer networks. In: Proceedings of ACM symposium on applied computing, pp 976–980

  144. Spinosa EJ, de Leon F, de Carvalho AP, Gama J (2009) Novelty detection with application to data streams. Intell Data Anal 13(3):405–422

    Article  Google Scholar 

  145. Sun Y, Tang K, Minku LL, Wang S, Yao X (2016) Online ensemble learning of data streams with gradually evolved classes. IEEE Trans Knowl Data Eng 28(6):1532–1545

    Article  Google Scholar 

  146. Tan SC, Ting KM, Liu TF (2011) Fast anomaly detection for streaming data. In: Proceedings of 22nd international joint conference on artificial intelligence, pp 1511–1516

  147. Tax DM, Duin RP (1999) Support vector domain description. Pattern Recogn Lett 20(11):1191–1199

    Article  Google Scholar 

  148. Tian G, Huang J, Peng M, Zhu J, Zhang Y (2017) Dynamic sampling of text streams and its application in text analysis. Knowl Inf Syst 53(2):507–531

    Article  Google Scholar 

  149. Tsymbal A (2004) The problem of concept drift: definitions and related work. Technical rep

  150. Ueda N, Saito K (2002) Parametric mixture models for multi-labeled text. In: Proceedings of 15th international conference on neural information processing systems, pp 737–744

  151. Wang H, Fan W, Yu PS, Han J (2003) Mining concept-drifting data streams using ensemble classifiers. In: Proceedings of 9th ACM SIGKDD international conference on knowledge discovery and data mining, pp 226–235

  152. Wang Z, Kong Z, Changra S, Tao H, Khan L (2019) Robust high dimensional stream classification with novel class detection. In: Proceedings of IEEE 35th international conference on data engineering, pp 1418–1429

  153. Wang Z, Tao H, Kong Z, Chandra S, Khan L (2019) Metric learning based framework for streaming classification with concept evolution. In: 2019 international joint conference on neural networks (IJCNN), pp 1–8

  154. Xiong X, Chan KL, Tan KL (2004) Similarity-driven cluster merging method for unsupervised fuzzy clustering. In: Proceedings of 20th conference on uncertainty in artificial intelligence, pp 611–618

  155. Yan G, Ai M (2013) A framework for concept drifting p2p traffic identification. TELKOMNIKA: Indones J Electr Eng 11(8):4317–4326

    Article  Google Scholar 

  156. Yan GH, Ai MH (2013) A micro-cluster-based data stream clustering method for p2p traffic classification. Proc Appl Mech Mater 263:1121–1126

    Article  Google Scholar 

  157. Yang Q, Zhang H, Wang G, Luo S, Chen D, Peng W, Shao J (2019) Dynamic runoff simulation in a changing environment: a data stream approach. Environ Model Softw 112:157–165

    Article  Google Scholar 

  158. Yang Y, Gopal S (2012) Multilabel classification with meta-level features in a learning-to-rank framework. Mach Learn 88(1):47–68

    Article  MathSciNet  MATH  Google Scholar 

  159. Yesilbudak M (2016) Clustering analysis of multidimensional wind speed data using k-means approach. In: Proceedings of IEEE international conference on renewable energy research and applications, pp 961–965

  160. ZareMoodi P, Beigy H, Siahroudi SK (2015) Novel class detection in data streams using local patterns and neighborhood graph. Neurocomputing 158:234–245

    Article  Google Scholar 

  161. ZareMoodi P, Kamali Siahroudi S, Beigy H (2019) Concept-evolution detection in non-stationary data streams: a fuzzy clustering approach. Knowl Inf Syst 60(3):1329–1352

    Article  Google Scholar 

  162. ZareMoodi P, Siahroudi SK, Beigy H (2016) A support vector based approach for classification beyond the learned label space in data streams. In: Proceeding of 31st annual ACM symposium on applied computing, pp 910–915

  163. Zhang H, Yang Q, Shao J, Wang G (2019) Dynamic streamflow simulation via online gradient-boosted regression tree. J Hydrol Eng 24(10):04019041

    Article  Google Scholar 

  164. Zhang M, Zhou Z (2014) A review on multi-label learning algorithms. IEEE Trans Knowl Data Eng 26(8):1819–1837

    Article  Google Scholar 

  165. si Zhang S, Wei Liu J, Zuo X (2021) Adaptive online incremental learning for evolving data streams. Appl Soft Comput 105:107255

    Article  Google Scholar 

  166. Zhang S, Wang M, Li W, Luo J, Lin Z (2019) Deep learning with emerging new labels for fault diagnosis. IEEE Access 7:6279–6287

    Article  Google Scholar 

  167. Zhang Z, Li Y, Zhang Z, Jin C, Gao M (2018) Adaptive matrix sketching and clustering for semisupervised incremental learning. IEEE Signal Process Lett 25(7):1069–1073

    Article  Google Scholar 

  168. Zhang Z, Zhou J (2010) Transfer estimation of evolving class priors in data stream classification. Pattern Recogn 43(9):3151–3161

    Article  MATH  Google Scholar 

  169. Zheng X, Li P, Hu X, Yu K (2021) Semi-supervised classification on data streams with recurring concept drift and concept evolution. Knowl-Based Syst 215:106749

    Article  Google Scholar 

  170. Zhou QF, Zhou H, Ning YP, Yang F, Li T (2015) Two approaches for novelty detection using random forest. Expert Syst Appl 42(10):4840–4850

    Article  Google Scholar 

  171. Zhu Y, Ting K, Zhou Z (2016) Multi-label learning with emerging new labels. In: Proceedings of IEEE 16th international conference on data mining, pp 1371–1376

  172. Zhu Y, Ting KM, Zhou Z (2017) New class adaptation via instance generation in one-pass class incremental learning. In: Proceedings of IEEE international conference on data mining, pp 1207–1212

  173. Zhu Y, Ting KM, Zhou Z (2018) Multi-label learning with emerging new labels. IEEE Trans Knowl Data Eng 30(10):1901–1914

    Article  Google Scholar 

  174. Zhu Y, Ting KM, Zhou ZH (2017) Discover multiple novel labels in multi-instance multi-label learning. In: Proceedings of thirty-first AAAI conference on artificial intelligence

  175. Žliobaite I (2010) Change with delayed labeling: when is it detectable? In: 2010 IEEE international conference on data mining workshops. IEEE, pp 843–850

Download references

Acknowledgements

This work is supported by the Fundamental Research Funds for the Central Universities (ZYGX 2019Z014), National Natural Science Foundation of China (61976044, 52079026), Fok Ying-Tong Education Foundation (161062) and Sichuan Science and Technology Program (2020 YFH0037).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junming Shao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Din, S.U., Shao, J., Kumar, J. et al. Data stream classification with novel class detection: a review, comparison and challenges. Knowl Inf Syst 63, 2231–2276 (2021). https://doi.org/10.1007/s10115-021-01582-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10115-021-01582-4

Keywords