Abstract
Developing effective and efficient data stream classifiers is challenging for the machine learning community because of the dynamic nature of data streams. As a result, many data stream learning algorithms have been proposed during the past decades and achieve great success in various fields. This paper aims to explore a specific type of challenge in learning evolving data streams, called concept evolution (emergence of novel classes). Concept evolution indicates that the underlying patterns evolve over time, and new patterns (classes) may emerge at any time in streaming data. Therefore, data stream classifiers with emerging class detection have received increasing attention in recent years due to the practical values in many real-world applications. In this article, we provide a comprehensive overview of the existing works in this line of research. We discuss and analyze various aspects of the proposed algorithms for data stream classification with concept evolution detection and adaptation. Additionally, we discuss the potential application areas in which these techniques can be used. We also provide a detailed overview of evaluation measures and datasets used in these studies. Finally, we describe the current research challenges and future directions for data stream classification with novel class detection.
Similar content being viewed by others
Notes
References
Abdallah ZS, Gaber MM, Srinivasan B, Krishnaswamy S (2016) Anynovel: detection of novel concepts in evolving data streams. Evol Syst 7(2):73–93
Abrol S, Khan L, Khadilkar V, Thuraisingham B, Cadenhead T (2012) Design and implementation of snodsoc: Novel class detection for social network analysis. In: Proceedings of international conference on intelligence and security informatics, pp 215–220
Aggarwal CC (2015) Outlier analysis. In: Proceedings of data mining. Springer, pp 237–263
Aggarwal CC, Han J, Wang J, Yu PS (2003) A framework for clustering evolving data streams. In: Proceedings of 29th international conference on very large data bases, pp 81–92
Ahmad S, Lavin A, Purdy S, Agha Z (2017) Unsupervised real-time anomaly detection for streaming data. Neurocomputing 262:134–147 (Online Real-Time Learning Strategies for Data Streams)
Ahmadi Z, Kramer S (2018) Modeling recurring concepts in data streams: a graph-based framework. Knowl Inf Syst 55(1):15–44
Al-Behadili H, Grumpe A, Dopp C, Wöhler C (2015) Proc. incremental learning and novelty detection of gestures using extreme value theory. In: IEEE International conference on computer graphics, vision and information security, pp 169–174
Al-Khateeb T, Masud MM, Al-Naami KM, Seker SE, Mustafa AM, Khan L, Trabelsi Z, Aggarwal C, Han J (2016) Recurring and novel class detection using class-based ensemble for evolving data stream. IEEE Trans Knowl Data Eng 28(10):2752–2764
Al-Khateeb T, Masud MM, Khan L, Aggarwal C, Han J, Thuraisingham B (2012) Stream classification with recurring and novel class detection using class-based ensemble. In: Proceedings of IEEE 12th international conference on data mining, pp 31–40
Albertini MK, de Mello RF (2007) A self-organizing neural network for detecting novelties. In: Proceedings of ACM symposium on applied computing, pp 462–466
Alippi C, Roveri M (2008) Just-in-time adaptive classifiers—Part i: detecting nonstationary changes. IEEE Trans Neural Netw 19(7):1145–1153
Alnaami K, Ayoade G, Siddiqui A, Ruozzi N, Khan L, Thuraisingham B (2015) P2v: Effective website fingerprinting using vector space representations. In: Proceedings of IEEE symposium series on computational intelligence, pp 59–66
Anguita D, Ghio A, Oneto L, Parra X, Reyes-Ortiz JL (2012) Human activity recognition on smartphones using a multiclass hardware friendly support vector machine. In: Proceedings of 4th international workshop on ambient assisted living and home care, pp 216 – 223
Araujo F, Hamlen KW, Biedermann S, Katzenbeisser S (2014) From patches to honey-patches: Lightweight attacker misdirection, deception, and disinformation. In: Proceedings of ACM SIGSAC conference on computer and communications security, pp 942–953
Arthur D, Vassilvitskii S (2007) K-means++: The advantages of careful seeding. In: Proceedings of 18th annual ACM-SIAM symposium on discrete algorithms, pp 1027–1035
Attar V, Pingale G (2014) Novel class detection in data streams. In: Proceedings of 2nd international conference on soft computing for problem solving, pp 683–690
Bahri M, Bifet A, Gama J, Gomes HM, Maniu S (2021) Data stream analysis: foundations, major tasks and tools. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, p e1405
Bahri M, Gomes HM, Bifet A, Maniu S (2020) CS-ARF: compressed adaptive random forests for evolving data stream classification. In: 2020 international joint conference on neural networks, IJCNN, pp 1–8
Bandaragoda TR, Ting KM, Albrecht D, Liu FT, Zhu Y, Wells JR (2018) Isolation-based anomaly detection using nearest-neighbor ensembles. Comput Intell 34(4):968–998
Barddal JP, Loezer L, Enembreck F, Lanzuolo R (2020) Lessons learned from data stream classification applied to credit scoring. Expert Syst Appl 162:113899
Bartkowiak AM (2011) Anomaly, novelty, one-class classification: a comprehensive introduction. Int J Comput Inf Syst Ind Manag Appl 3(1):61–71
Ben-Hur A (2008) Support vector clustering. Scholarpedia 3(6):5187
Beyene AA, Welemariam T, Persson M, Lavesson N (2015) Improved concept drift handling in surgery prediction and other applications. Knowl Inf Syst 44(1):177–196
Bicego M, Figueiredo MA (2009) Soft clustering using weighted one-class support vector machines. Pattern Recogn 42(1):27–32
Bifet A, Holmes G, Kirkby R, Pfahringer B (2010) Moa: Massive online analysis. J Mach Learn Res 11:1601–1604
Bifet A, Holmes G, Pfahringer B (2010) Leveraging bagging for evolving data streams. In: Proceedings of European conference on machine learning and knowledge discovery in databases, pp 135–150
Blackard JA, Dean DJ (1999) Comparative accuracies of artificial neural networks and discriminant analysis in predicting forest cover types from cartographic variables. Comput Electron Agric 24(3):131–151
Boldt M, Borg A, Ickin S, Gustafsson J (2020) Anomaly detection of event sequences using multiple temporal resolutions and markov chains. Knowl Inf Syst 62(2):669–686
Bouguelia M, Belaid Y, Belaid A (2014) Efficient active novel class detection for data stream classification. In: Proceedings of 22nd international conference on pattern recognition, pp 2826–2831
Bouguelia MR, Nowaczyk S, Payberah AH (2018) An adaptive algorithm for anomaly and novelty detection in evolving data streams. Data Min Knowl Disc 32(6):1597–1633
Breunig MM, Kriegel HP, Ng RT, Sander J (2000) Lof: Identifying density-based local outliers. In: Proceedings of ACM SIGMOD international conference on management of data, pp 93–104
Burkhardt S, Kramer S (2019) Multi-label classification using stacked hierarchical Dirichlet processes with reduced sampling complexity. Knowl Inf Syst 59(1):93–115
Cai X, Zhao P, Ting K, Mu X, Jiang Y (2019) Nearest neighbor ensembles: An effective method for difficult problems in streaming classification with emerging new classes. In: Proceedings of IEEE international conference on data mining, pp 970–975
Camci F, Chinnam RB (2008) General support vector representation machine for one-class classification of non-stationary classes. Pattern Recogn 41(10):3021–3034
Campello R, Hruschka E (2006) A fuzzy extension of the silhouette width criterion for cluster analysis. Fuzzy Sets Syst 157(21):2858–2875
Cao F, Ester M, Qian W, Zhou A (2006) Density-based clustering over an evolving data stream with noise. In: Proceedings of SIAM conference on data mining, pp 328–339
Castro-Cabrera P, Castellanos-Dominguez G, Mera C, Franco-Marín L, Orozco-Alzate M (2021) Adaptive classification using incremental learning for seismic-volcanic signals with concept drift. J Volcanol Geoth Res 413:107211
Cejnek M, Bukovsky I (2018) Concept drift robust adaptive novelty detection for data streams. Neurocomputing 309:46–53
Chandola V, Banerjee A, Kumar V (2007) Outlier detection: a survey. ACM Comput Surv 14:15
Chandola V, Banerjee A, Kumar V (2009) Anomaly detection: a survey. ACM Comput Surv 41(3):15
Coletta LF, Ponti M, Hruschka ER, Acharya A, Ghosh J (2019) Combining clustering and active learning for the detection and learning of new image classes. Neurocomputing 358:150–165
Cristiani AL, da Silva TP, de Arruda Camargo H (2020) A fuzzy approach for classification and novelty detection in data streams under intermediate latency. In: Cerri R, Prati RC (eds) Intelligent systems–9th Brazilian conference, BRACIS, Lecture Notes in Computer Science, vol 12320, pp 171–186
Da Q, Yu Y, Zhou ZH (2014) Learning with augmented class by exploiting unlabeled data. In: Proceedings of 28th AAAI conference on artificial intelligence, pp 1760–1766
da Silva TP, Schick L, de Abreu Lopes P, de Arruda Camargo H (2018) A fuzzy multiclass novelty detector for data streams. In: Proceedings of IEEE international conference on fuzzy systems, pp 1–8
da Silva TP, Urban GA, d. A. Lopes P, d. A. Camargo H (2017) A fuzzy variant for on-demand data stream classification. In: Proceedings of Brazilian conference on intelligent systems, pp 67–72
Dal Pozzolo A, Boracchi G, Caelen O, Alippi C, Bontempi G (2018) Credit card fraud detection: a realistic modeling and a novel learning strategy. IEEE Trans Neural Netw Learn Syst 29(8):3784–3797
De Francisci Morales G, Bifet A (2015) Samoa: Scalable advanced massive online analysis. J Mach Learn Res 16(1):149–153
Deng C, Yuan W, Tao Z, Cao J (2016) Detecting novel class for sensor-based activity recognition using reject rule. In: Proceedings of 9th international conference on internet and distributed computing systems, pp 34–44
Din SU, Shao J (2020) Exploiting evolving micro-clusters for data stream classification with emerging class detection. Inf Sci 507:404–420
Din SU, Shao J, Kumar J, Ali W, Liu J, Ye Y (2020) Online reliable semi-supervised learning on evolving data streams. Inf Sci 525:153–171
Ding S, Liu X, Zhang M (2018) Imbalanced augmented class learning with unlabeled data by label confidence propagation. In: Proceedings of IEEE international conference on data mining, pp 79–88
Ditzler G, Muhlbaier MD, Polikar R (2010) Incremental learning of new classes in unbalanced datasets: Learn++.udnc. In: Proceedings of 9th international workshop on multiple classifier systems, pp 33–42
Ditzler G, Rosen G, Polikar R (2013) Incremental learning of new classes from unbalanced data. In: Proceedings of international joint conference on neural networks, pp 1–8
Domingos P, Hulten G (2000) Mining high-speed data streams. In: Proceedings of 6th ACM SIGKDD international conference on knowledge discovery and data mining, pp 71–80
Dries A, Rückert U (2009) Adaptive concept drift detection. Stat Anal Data Min 2(56):311–327
Ducange P, Pecori R, Mezzina P (2018) A glimpse on big data analytics in the framework of marketing strategies. Soft Comput 22(1):325–342
Elwell R, Polikar R (2011) Incremental learning of concept drift in nonstationary environments. IEEE Trans Neural Netw 22(10):1517–1531
Erfani SM, Rajasegarar S, Leckie C (2011) An efficient approach to detecting concept-evolution in network data streams. In: Proceedings of Australasian telecommunication networks and applications conference, pp 1–7
Ester M, Kriegel HP, Sander J, Xu X (1996) A density-based algorithm for discovering clusters a density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings 2nd international conference on knowledge discovery and data mining, pp 226–231
Faria ER, Gama Ja, Carvalho ACPLF (2013) Novelty detection algorithm for data streams multi-class problems. In: Proceedings of 28th annual ACM symposium on applied computing, pp 795–800
Faria ER, Gonçalves IJCR, de Carvalho ACPLF, Gama J (2016) Novelty detection in data streams. Artif Intell Rev 45(2):235–269
de Faria ER, Goncalves IR, Gama J, de Leon Ferreira ACP et al (2015) Evaluation of multiclass novelty detection algorithms for data streams. IEEE Trans Knowl Data Eng 27(11):2961–2973
de Faria ER, Ponce de Leon Ferreira Carvalho AC, Gama J (2016) Minas: multiclass learning algorithm for novelty detection in data streams. Data Min Knowl Discov 30(3):640–680
Farid DM, Rahman CM (2012) Novel class detection in concept-drifting data stream mining employing decision tree. In: Proceedings of 7th international conference on electrical and computer engineering, pp 630–633
Farid DM, Zhang L, Hossain A, Rahman CM, Strachan R, Sexton G, Dahal K (2013) An adaptive ensemble classifier for mining concept drifting data streams. Expert Syst Appl 40(15):5895–5906
Folino G, Pisani FS, Pontieri L (2020) A gp-based ensemble classification framework for time-changing streams of intrusion detection data. Soft Comput 24(23):17541–17560
Gama J (2010) Knowledge discovery from data streams. Chapman and Hall/CRC, London
Gama J, Žliobaitė I, Bifet A, Pechenizkiy M, Bouchachia A (2014) A survey on concept drift adaptation. ACM Comput Surv 46(4):44:1-44:37
Gao Y, Chandra S, Li Y, Khan L, Thuraisingham BM (2020) Saccos: A semi-supervised framework for emerging class detection and concept drift adaption over data streams. IEEE Trans Knowl Data Eng. https://doi.org/10.1109/TKDE.2020.2993193
Garcia KD, de Faria ER, de Sá CR, Mendes-Moreira J, Aggarwal CC, de Carvalho AC, Kok JN (2019) Ensemble clustering for novelty detection in data streams. In: Proceedings of international conference on discovery science. Springer, pp 460–470
Garcia KD, Poel M, Kok JN, de Carvalho ACPLF (2019) Online clustering for novelty detection and concept drift in data streams. In: Proceedings of 19th conference on artificial intelligence, pp 448–459
Ghomeshi H, Gaber MM, Kovalchuk Y (2020) A non-canonical hybrid metaheuristic approach to adaptive data stream classification. Future Gener Comput Syst 102:127–139
Goldenberg I, Webb GI (2019) Survey of distance measures for quantifying concept drift and shift in numeric data. Knowl Inf Syst 60(2):591–615
Gomes HM, Barddal JP, Enembreck F, Bifet A (2017) A survey on ensemble learning for data stream classification. ACM Comput Surv 50(2):23:1-23:36
Haque A, Khan L, Baron M (2015) Semi supervised adaptive framework for classifying evolving data stream. In: Proceedings of 19th Pacific-Asia conference on advances in knowledge discovery and data mining, pp 383–394
Haque A, Khan L, Baron M (2016) Sand: Semi-supervised adaptive novel class detection and classification over data stream. In: Proceedings of 30th AAAI conference on artificial intelligence, pp 1652–1658
Haque A, Khan L, Baron M, Thuraisingham B, Aggarwal C (2016) Efficient handling of concept drift and concept evolution over stream data. In: Proceedings of IEEE 32nd international conference on data engineering, pp 481–492
Harries M, cse tr, UN, Wales NS (1999) Splice-2 comparative evaluation: electricity pricing. Technical report
Hayat MZ, Hashemi MR (2010) A dct based approach for detecting novelty and concept drift in data streams. In: Proceedings of international conference on soft computing and pattern recognition, pp 373–378
Hosseini MJ, Gholipour A, Beigy H (2016) An ensemble of cluster-based classifiers for semi-supervised classification of non-stationary data streams. Knowl Inf Syst 46(3):567–597
Hu C, Chen Y, Hu L, Peng X (2018) A novel random forests based class incremental learning method for activity recognition. Pattern Recogn 78:277–290
Huang Z (1998) Extensions to the k-means algorithm for clustering large data sets with categorical values. Data Min Knowl Disccov 2(3):283–304
Iosifidis V, Ntoutsi E (2020) Sentiment analysis on big sparse data streams with limited labels. Knowl Inf Syst 62(4):1393–1432
Islam MR (2014) Recurring and novel class detection in concept-drifting data streams using class-based ensemble. In: Proceedings of 18th Pacific-Asia conference on advances in knowledge discovery and data mining, pp 425–436
Júnior JC, Faria E, Silva J, Gama J, Cerri R (2019) Novelty detection for multi-label stream classification. In: Proceedings of 8th IEEE Brazilian conference on intelligent systems, pp 144–149
Katakis I, Tsoumakas G, Vlahavas I (2008) Multilabel text classification for automated tag suggestion. In: Proceedings of ECML/PKDD workshop on discovery challenge
Katakis I, Tsoumakas G, Vlahavas I (2010) Tracking recurring contexts using ensemble classifiers: an application to email filtering. Knowl Inf Syst 22(3):371–391
Khezri S, Tanha J, Ahmadi A, Sharifi A (2021) A novel semi-supervised ensemble algorithm using a performance-based selection metric to non-stationary data streams. Neurocomputing 442:125–145
Krawczyk B, Stefanowski J, Wozniak M (2015) Data stream classification and big data analytics. Neurocomputing 150:238–239
Krawczyk B, Woźniak M (2013) Incremental learning and forgetting in one-class classifiers for data streams. In: Proceedings of 8th international conference on computer recognition systems, pp 319–328
Kumar J, Shao J, Uddin S, Ali W (2020) An online semantic-enhanced Dirichlet model for short text stream clustering. In: Jurafsky D, Chai J, Schluter N, Tetreault JR (eds) Proceedings of the 58th annual meeting of the association for computational linguistics. Association for Computational Linguistics, pp 766–776
Kuzborskij I, Orabona F, Caputo B (2013) From n to n+1: multiclass transfer incremental learning. In: Proceedings of IEEE conference on computer vision and pattern recognition, pp 3358–3365
Lazzaretti AE, Tax DMJ, Neto HV, Ferreira VH (2016) Novelty detection and multi-class classification in power distribution voltage waveforms. Expert Syst Appl 45:322–330
Li MJ, Ng MK, Cheung Y, Huang JZ (2008) Agglomerative fuzzy k-means clustering algorithm with selection of number of clusters. IEEE Trans Knowl Data Eng 20(11):1519–1534
Li X, Zhou Y, Jin Z, Yu P, Zhou S (2020) A classification and novel class detection algorithm for concept drift data stream based on the cohesiveness and separation index of mahalanobis distance. J Electr Comput Eng 2020:4027423:1-4027423:8
Liberty E (2013) Simple and deterministic matrix sketching. In: Proc. 19th ACM SIGKDD international conference on knowledge discovery and data mining, pp 581–588
Liu FT, Ting KM, hua Zhou Z (2008) Isolation forest. In: Proceedings of 8th IEEE international conference on data mining, pp 413–422
Losing V, Hammer B, Wersing H (2015) Interactive online learning for obstacle classification on a mobile robot. In: Proceedings of international joint conference on neural networks, pp 1–8
Losing V, Hammer B, Wersing H (2018) Tackling heterogeneous concept drift with the self-adjusting memory (SAM). Knowl Inf Syst 54(1):171–201
Lu J, Liu A, Dong F, Gu F, Gama J, Zhang G (2019) Learning under concept drift: a review. IEEE Trans Knowl Data Eng 31(12):2346–2363. https://doi.org/10.1109/TKDE.2018.2876857
Lughofer E, Weigl E, Heidl W, Eitzinger C, Radauer T (2015) Integrating new classes on the fly in evolving fuzzy classifier designs and their application in visual inspection. Appl Soft Comput 35(C):558–582
Markou M, Singh S (2003) Novelty detection: a review—part 1: statistical approaches. Signal Process 83(12):2481–2497
Markou M, Singh S (2003) Novelty detection: a review—part 2: neural network based approaches. Signal Process 83(12):2499–2521
Masud M, Gao J, Khan L, Han J, Thuraisingham BM (2011) Classification and novel class detection in concept-drifting data streams under time constraints. IEEE Trans Knowl Data Eng 23(6):859–874
Masud MM, Al-Khateeb TM, Khan L, Aggarwal C, Gao J, Han J, Thuraisingham B (2011) Detecting recurring and novel classes in concept-drifting data streams. In: Proceedings of IEEE 11th international conference on data mining, pp 1176–1181
Masud MM, Chen Q, Gao J, Khan L, Han J, Thuraisingham B (2010) Classification and novel class detection of data streams in a dynamic feature space. In: Proceedings of machine learning and knowledge discovery in databases. Springer, Berlin, Heidelberg, pp 337–352
Masud MM, Chen Q, Khan L, Aggarwal C, Gao J, Han J, Thuraisingham B (2010) Addressing concept-evolution in concept-drifting data streams. In: Proceedings of IEEE international conference on data mining, pp 929–934
Masud MM, Chen Q, Khan L, Aggarwal CC, Gao J, Han J, Srivastava A, Oza NC (2013) Classification and adaptive novel class detection of feature-evolving data streams. IEEE Trans Knowl Data Eng 25(7):1484–1497
Masud MM, Gao J, Khan L, Han J, Thuraisingham B (2009) Integrating novel class detection with classification for concept-drifting data streams. In: Proceedings of joint European conference on machine learning and knowledge discovery in databases, pp 79–94
Masud MM, Gao J, Khan L, Han J, Thuraisingham B (2010) Classification and novel class detection in data streams with active mining. In: Proceedings of 14th Pacific-Asia conference on advances in knowledge discovery and data mining, pp 311–324
Miao Y, Qiu L, Chen H, Zhang J, Wen Y (2013) Novel class detection within classification for data streams. In: Proceedings of 10th international symposium on neural networks, pp 413–420
Zhang M-L, Zhou Z-H (2006) Multilabel neural networks with applications to functional genomics and text categorization. IEEE Trans Knowl Data Eng 18(10):1338–1351
Minku LL, White AP, Yao X (2010) The impact of diversity on online ensemble learning in the presence of concept drift. IEEE Trans Knowl Data Eng 22(5):730–742
Mohamad S, Sayed-Mouchaweh M, Bouchachia A (2018) Active learning for classifying data streams with unknown number of classes. Neural Netw 98:1–15
Mohamad S, Sayed-Mouchaweh M, Bouchachia A (2020) Online active learning for human activity recognition from sensory data streams. Neurocomputing 390:341–358
Mu X, Ting KM, Zhou Z (2017) Classification under streaming emerging new classes: a solution using completely-random trees. IEEE Trans Knowl Data Eng 29(8):1605–1618
Mu X, Zhu F, Du J, Lim EP, Zhou ZH (2017) Streaming classification with emerging new class by class matrix sketching. In: Proceedings of 31st AAAI conference on artificial intelligence
Mu X, Zhu F, Liu Y, Lim EP, Zhou ZH (2018) Social stream classification with emerging new labels. In: Proceedings of 22nd Pacific-Asia conference on advances in knowledge discovery and data mining, pp 16–28
Muhlbaier MD, Topalis A, Polikar R (2009) \(\text{ Learn}^{++}\).nc: combining ensemble of classifiers with dynamically weighted consult-and-vote for efficient incremental learning of new classes. IEEE Trans Neural Netw 20(1):152–168
Mustafa AM, Ayoade G, Al-Naami K, Khan L, Hamlen KW, Thuraisingham B, Araujo F (2017) Unsupervised deep embedding for novel class detection over data stream. In: Proceedings of IEEE international conference on big data, pp 1830–1839
Narasimhamurthy A, Kuncheva LI (2007) A framework for generating data to simulate changing environments. In: Proceedings of 25th international multi-conference: artificial intelligence and applications, pp 384–389
Nguyen H, Woon Y, Ng WK (2015) A survey on data stream clustering and classification. Knowl Inf Syst 45(3):535–569
Park CH, Shim H (2007) On detecting an emerging class. In: Proceedings of IEEE international conference on granular computing, pp 265–265
Park CH, Shim H (2010) Detection of an emerging new class using statistical hypothesis testing and density estimation. Int J Pattern Recogn Artif Intell 24:1–14
Parker B, Mustafa AM, Khan L (2012) Novel class detection and feature via a tiered ensemble approach for stream mining. In: Proceedings of IEEE 24th international conference on tools with artificial intelligence, vol 1, pp 1171–1178
Parker BS, Khan L (2013) Rapidly labeling and tracking dynamically evolving concepts in data streams. In: Proceedings of IEEE 13th international conference on data mining workshops, pp 1161–1164
Parker BS, Khan L (2015) Detecting and tracking concept class drift and emergence in non-stationary fast data streams. In: Proceedings of 29th AAAI conference on artificial intelligence, pp 2908–2913
Parveen P, McDaniel N, Hariharan VS, Thuraisingham B, Khan L (2012) Unsupervised ensemble based learning for insider threat detection. In: Proceedings of international conference on privacy, security, risk and trust and international conference on social computing, pp 718–727
Patcha A, Park JM (2007) An overview of anomaly detection techniques: existing solutions and latest technological trends. Comput Netw 51(12):3448–3470
Pimentel MA, Clifton DA, Clifton L, Tarassenko L (2014) A review of novelty detection. Signal Process 99:215–249
Razavi-Far R, Hallaji E, Saif M, Ditzler G (2019) A novelty detector and extreme verification latency model for nonstationary environments. IEEE Trans Industr Electron 66(1):561–570
Rodriguez A, Laio A (2014) Clustering by fast search and find of density peaks. Science 344(6191):1492–1496
Rusiecki A (2012) Robust neural network for novelty detection on data streams. In: Proceedings of 11th international conference on artificial intelligence and soft computing, pp 178–186
Scholkopf B, Smola AJ (2001) Learning with kernels: support vector machines, regularization, optimization, and beyond. MIT Press, Cambridge, MA
Seroussi Y, Bohnert F, Zukerman I (2011) Personalised rating prediction for new users using latent factor models. In: Proceedings of 22nd ACM conference on hypertext and hypermedia, pp 47–56
Shao J, Ahmadi Z, Kramer S (2014) Prototype-based learning on concept-drifting data streams. In: Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 412–421
Shao J, Huang F, Yang Q, Luo G (2018) Robust prototype-based learning on data streams. IEEE Trans Knowl Data Eng 30(5):978–991
Siahroudi SK, Moodi PZ, Beigy H (2018) Detection of evolving concepts in non-stationary data streams: a multiple kernel learning approach. Expert Syst Appl 91:187–197
Sokolova M, Lapalme G (2009) A systematic analysis of performance measures for classification tasks. Inf Process Manag 45(4):427–437
Souza VM, Silva DF, Gama J, Batista GE (2015) Data stream classification guided by clustering on nonstationary environments and extreme verification latency. In: Proceedings of SIAM international conference on data mining, pp 873–881
Spinosa EJ, Carvalho ACPLF (2005) Support vector machines for novel class detection in bioinformatics. Genet Mol Res 4(3):608–615
Spinosa EJ, de Leon F. de Carvalho AP, Gama Ja (2007) Olindda: A cluster-based approach for detecting novelty and concept drift in data streams. In: Proceedings of ACM symposium on applied computing, pp 448–452
Spinosa EJ, de Leon F. de Carvalho AP, Gama Ja (2008) Cluster-based novel concept detection in data streams applied to intrusion detection in computer networks. In: Proceedings of ACM symposium on applied computing, pp 976–980
Spinosa EJ, de Leon F, de Carvalho AP, Gama J (2009) Novelty detection with application to data streams. Intell Data Anal 13(3):405–422
Sun Y, Tang K, Minku LL, Wang S, Yao X (2016) Online ensemble learning of data streams with gradually evolved classes. IEEE Trans Knowl Data Eng 28(6):1532–1545
Tan SC, Ting KM, Liu TF (2011) Fast anomaly detection for streaming data. In: Proceedings of 22nd international joint conference on artificial intelligence, pp 1511–1516
Tax DM, Duin RP (1999) Support vector domain description. Pattern Recogn Lett 20(11):1191–1199
Tian G, Huang J, Peng M, Zhu J, Zhang Y (2017) Dynamic sampling of text streams and its application in text analysis. Knowl Inf Syst 53(2):507–531
Tsymbal A (2004) The problem of concept drift: definitions and related work. Technical rep
Ueda N, Saito K (2002) Parametric mixture models for multi-labeled text. In: Proceedings of 15th international conference on neural information processing systems, pp 737–744
Wang H, Fan W, Yu PS, Han J (2003) Mining concept-drifting data streams using ensemble classifiers. In: Proceedings of 9th ACM SIGKDD international conference on knowledge discovery and data mining, pp 226–235
Wang Z, Kong Z, Changra S, Tao H, Khan L (2019) Robust high dimensional stream classification with novel class detection. In: Proceedings of IEEE 35th international conference on data engineering, pp 1418–1429
Wang Z, Tao H, Kong Z, Chandra S, Khan L (2019) Metric learning based framework for streaming classification with concept evolution. In: 2019 international joint conference on neural networks (IJCNN), pp 1–8
Xiong X, Chan KL, Tan KL (2004) Similarity-driven cluster merging method for unsupervised fuzzy clustering. In: Proceedings of 20th conference on uncertainty in artificial intelligence, pp 611–618
Yan G, Ai M (2013) A framework for concept drifting p2p traffic identification. TELKOMNIKA: Indones J Electr Eng 11(8):4317–4326
Yan GH, Ai MH (2013) A micro-cluster-based data stream clustering method for p2p traffic classification. Proc Appl Mech Mater 263:1121–1126
Yang Q, Zhang H, Wang G, Luo S, Chen D, Peng W, Shao J (2019) Dynamic runoff simulation in a changing environment: a data stream approach. Environ Model Softw 112:157–165
Yang Y, Gopal S (2012) Multilabel classification with meta-level features in a learning-to-rank framework. Mach Learn 88(1):47–68
Yesilbudak M (2016) Clustering analysis of multidimensional wind speed data using k-means approach. In: Proceedings of IEEE international conference on renewable energy research and applications, pp 961–965
ZareMoodi P, Beigy H, Siahroudi SK (2015) Novel class detection in data streams using local patterns and neighborhood graph. Neurocomputing 158:234–245
ZareMoodi P, Kamali Siahroudi S, Beigy H (2019) Concept-evolution detection in non-stationary data streams: a fuzzy clustering approach. Knowl Inf Syst 60(3):1329–1352
ZareMoodi P, Siahroudi SK, Beigy H (2016) A support vector based approach for classification beyond the learned label space in data streams. In: Proceeding of 31st annual ACM symposium on applied computing, pp 910–915
Zhang H, Yang Q, Shao J, Wang G (2019) Dynamic streamflow simulation via online gradient-boosted regression tree. J Hydrol Eng 24(10):04019041
Zhang M, Zhou Z (2014) A review on multi-label learning algorithms. IEEE Trans Knowl Data Eng 26(8):1819–1837
si Zhang S, Wei Liu J, Zuo X (2021) Adaptive online incremental learning for evolving data streams. Appl Soft Comput 105:107255
Zhang S, Wang M, Li W, Luo J, Lin Z (2019) Deep learning with emerging new labels for fault diagnosis. IEEE Access 7:6279–6287
Zhang Z, Li Y, Zhang Z, Jin C, Gao M (2018) Adaptive matrix sketching and clustering for semisupervised incremental learning. IEEE Signal Process Lett 25(7):1069–1073
Zhang Z, Zhou J (2010) Transfer estimation of evolving class priors in data stream classification. Pattern Recogn 43(9):3151–3161
Zheng X, Li P, Hu X, Yu K (2021) Semi-supervised classification on data streams with recurring concept drift and concept evolution. Knowl-Based Syst 215:106749
Zhou QF, Zhou H, Ning YP, Yang F, Li T (2015) Two approaches for novelty detection using random forest. Expert Syst Appl 42(10):4840–4850
Zhu Y, Ting K, Zhou Z (2016) Multi-label learning with emerging new labels. In: Proceedings of IEEE 16th international conference on data mining, pp 1371–1376
Zhu Y, Ting KM, Zhou Z (2017) New class adaptation via instance generation in one-pass class incremental learning. In: Proceedings of IEEE international conference on data mining, pp 1207–1212
Zhu Y, Ting KM, Zhou Z (2018) Multi-label learning with emerging new labels. IEEE Trans Knowl Data Eng 30(10):1901–1914
Zhu Y, Ting KM, Zhou ZH (2017) Discover multiple novel labels in multi-instance multi-label learning. In: Proceedings of thirty-first AAAI conference on artificial intelligence
Žliobaite I (2010) Change with delayed labeling: when is it detectable? In: 2010 IEEE international conference on data mining workshops. IEEE, pp 843–850
Acknowledgements
This work is supported by the Fundamental Research Funds for the Central Universities (ZYGX 2019Z014), National Natural Science Foundation of China (61976044, 52079026), Fok Ying-Tong Education Foundation (161062) and Sichuan Science and Technology Program (2020 YFH0037).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Din, S.U., Shao, J., Kumar, J. et al. Data stream classification with novel class detection: a review, comparison and challenges. Knowl Inf Syst 63, 2231–2276 (2021). https://doi.org/10.1007/s10115-021-01582-4
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10115-021-01582-4