Abstract
Uncovering the latent structure of the data is an active research topic in data mining. However, in the distance metric learning framework, previous studies have mainly focused on the classification performance. In this work, we consider the distance metric learning problem in the ranking setting, where predicting the order between the data vectors is more important than predicting the class labels. We focus on two problems: improving the ranking prediction accuracy and identifying the latent structure of the data. The core of our model consists of ranking the data using a Mahalanobis distance function. The additional use of non-negativity constraints and an entropy-based cost function allows us to simultaneously minimize the ranking error while identifying useful meta-features. To demonstrate its usefulness for information retrieval applications, we compare the performance of our method with four other methods on four UCI data sets, three text data sets, and four image data sets. Our approach shows good ranking accuracies, especially when few training data are available. We also use our model to extract and interpret the latent structure of the data sets. In addition, our approach is simple to implement and computationally efficient and can be used for data embedding and visualization.
Similar content being viewed by others
Notes
Although we use text documents for illustrative purposes, our approach can be applied to any kind of data represented by vectors (e.g., image data, biological data, etc.).
References
Amini MR, Truong TV, Goutte C (2008) A boosting algorithm for learning bipartite ranking functions with partially labeled data, In: Proceedings of the 31st annual international ACM SIGIR conference on research and development in information retrieval. ACM, New York, NY, USA, pp 99–106
Baccini A, Dejean S, Lafage L et al (2011) How many performance measures to evaluate information retrieval systems? Knowl Inform Syst 30(3):693–713
Baker LD, McCallum AK (1998) Distributional clustering of words for text classification, In: Proceedings of the 21st annual international ACM SIGIR conference on research and development in information retrieval. ACM, New York, NY, USA, pp 96–103
Bekkerman R, El-Yaniv R, Tishby N et al (2003) Distributional word clusters vs. words for text categorization. J Mach Learn Res 3:1183–1208
Burges S, Shaked T, Renshaw E et al (2005) Learning to rank using gradient descent. In: Proceedings of the 22nd international conference on machine learning. ACM, New York, NY, USA, pp 89–96
Burges CJC, Ragno R, Le QV (2007) Learning to rank with nonsmooth cost functions. In: Advances in neural information processing systems, vol 19. MIT Press, pp 193–200
Chapelle O, Shivaswamy P, Vadrevu S et al (2010) Multi-task learning for boosting with application to web search ranking. In: Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, New York, NY, USA, pp 1189–1198
Chen Y, Rege M, Dong M et al (2008) Non-negative matrix factorization for semi-supervised data clustering. Knowl Inform Syst 17(3):355–379
Cohen WW, Schapire RE, Singer Y (1999) Learning to order things. J Artif Intell Res 10(1):243–270
Cover TM, Thomas JA (1991) Elements of information theory. Wiley, London
Davis JV, Kulis B, Jain P et al (2007) Information-theoretic metric learning. In: Proceedings of the 24th international conference on machine learning. ACM, New York, NY, USA, pp 209–216
Dela Rosa K, Metsis V, Athitsos V (2011) Boosted ranking models: a unifying framework for ranking predictions. Knowl Inform Syst 30(3):543–568
Dhillon IS, Modha DS (2001) Concept decompositions for large sparse text data using clustering. Mach Learn 42(1):143–175
Duda RO, Hart PE, Stork DG (2000) Pattern classification. Wiley, London
Forman G (2003) An extensive empirical study of feature selection metrics for text classification. J Mach Learn Res 3:1289–1305
Freund Y, Schapire RE (1996) Experiments with a new boosting algorithm. In: Proceedings of the 13th international conference on machine learning. ACM, New York, NY, USA, pp 148–156
Freund Y, Iyer R, Schapire RE et al (2003) An efficient boosting algorithm for combining preferences. J Mach Learn Res 4:933–969
Globerson A, Roweis S (2006) Metric learning by collapsing classes. In: Advances in neural information processing systems, vol 19. MIT Press, pp 451–458
Goldberger J, Roweis S, Hinton G et al (2004) Neighbourhood components analysis. In: Advances in neural information processing systems, vol 17. MIT Press, pp 513–520
Harpeled S, Roth D, Zimak D (2003) Constraint classification for multiclass classification and ranking. In: Advances in neural information processing systems, vol 16. MIT Press, pp 785–792
Huang K, Ying Y, Campbell C (2011) Generalized sparse metric learning with relative comparisons. Knowl Inform Syst 28(1):25–45
Jain P, Kulis B, Dhillon IS et al (2008) Online metric learning and fast similarity search. In: Advances in neural information processing systems, vol 21. MIT Press, pp 761–768
Jolliffe I (1986) Principal component analysis. Springer, New York
Kulis B, Sustik M, Dhillon IS (2006) Learning low-rank kernel matrices. In: Proceedings of the 23rd international conference on machine learning. ACM, New York, NY, USA, pp 505–512
Lee DD, Seung HS (1999) Learning the parts of objects by non-negative matrix factorization. Nature 401:788–791
Lee DD, Seung HS (2001) Algorithms for Non-negative Matrix Factorization. In: Advances in neural information processing systems. MIT Press, pp 556–562
Liu TY (2009) Learning to rank for information retrieval. Found Trends Inform Retriev 3(3):225–331
Manning CD, Raghavan P, Schütze H (2008) Introduction to information retrieval. Cambridge University Press, New York
Martínez AM, Kak AC (2001) PCA versus LDA. IEEE Trans Pattern Anal Mach Intell 23(2):228–233
Pereira F, Tishby N, Lee L (1993) Distributional clustering of English words. In: Proceedings of the 31st annual meeting on association for computational linguistics. ACL, Stroudsburg, PA, USA, pp 183–190
Salton G, McGill MJ (1986) Introduction to modern information retrieval. McGraw-Hill, Inc., New York
Schultz M, Joachims T (2004) Learning a distance metric from relative comparisons. In: Advances in neural information processing systems, vol 16. MIT Press, pp 41–48
Shalev-Shwartz S, Singer Y, Ng AY (2004) Online and batch learning of pseudo-metrics. In: Proceedings of the 21st international conference on machine learning. ACM, New York, NY, USA, pp 743–750
Shental N, Hertz T, Weinshall D et al (2002) Adjustment learning and relevant component analysis. In: Proceedings of the 7th European conference on computer vision. Springer, London, UK, pp 776–792
Slonim N, Tishby N (2000) Document clustering using word clusters via the information bottleneck method. In: Proceedings of the 23rd annual international ACM SIGIR conference on research and development in information retrieval. ACM, New York, NY, USA, pp 208–215
Sugiyama M (2006) Local Fisher discriminant analysis for supervised dimensionality reduction. In: Proceedings of the 23rd international conference on machine learning. ACM, New York, NY, USA, pp 905–912
Thurau C, Kersting K, Wahabzada MC et al (2010) Convex non-negative matrix factorization for massive datasets. Knowl Inform Syst 29(2):457–478
Usunier N, Amini MR, Gallinari P (2005) Generalisation error bounds for classifiers trained with interdependent data. In: Advances in neural information processing systems, vol 18. MIT Press, pp 1369–1376
Usunier N, Buffoni D, Gallinari P (2009) Ranking with ordered weighted pairwise classification. In: Proceedings of the 26th international conference on machine learning. ACM, New York, NY, USA, pp 1057–1064
Wang D, Li T, Ding C (2010) Weighted feature subset non-negative matrix factorization and its applications to document understanding. In: Proceedings of the 2010 IEEE international conference on data mining, pp 541–550
Weinberger KQ, Blitzer J, Saul LK (2006) Distance metric learning for large margin nearest neighbor classification. In: Advances in neural information processing systems, vol 18. MIT Press, pp 1473–1480
Xing EP, Ng AY, Jordan MI et al (2002) Distance metric learning, with application to clustering with side-information. In: Advances in neural information processing systems, vol 15. MIT Press, pp 505–512
Xu W, Liu X, Gong Y (2003) Document clustering based on non-negative matrix factorization. In: Proceedings of the 26th annual international ACM SIGIR conference on research and development in information retrieval. ACM, New York, NY, USA, pp 267–273
Yang Y, Pedersen JO (1997) A comparative study on feature selection in text categorization. In: Proceedings of the fourteenth international conference on machine learning. Morgan Kaufmann Publishers, San Francisco, USA, pp 412–420
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Pessiot, JF., Kim, H. & Fujibuchi, W. Pairwise ranking component analysis. Knowl Inf Syst 36, 459–487 (2013). https://doi.org/10.1007/s10115-012-0574-x
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10115-012-0574-x