Improved lower bounds and exact algorithm for the capacitated arc routing problem | Mathematical Programming Skip to main content
Log in

Improved lower bounds and exact algorithm for the capacitated arc routing problem

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

In the capacitated arc routing problem (CARP), a subset of the edges of an undirected graph has to be serviced at least cost by a fleet of identical vehicles in such a way that the total demand of the edges serviced by each vehicle does not exceed its capacity. This paper describes a new lower bounding method for the CARP based on a set partitioning-like formulation of the problem with additional cuts. This method uses cut-and-column generation to solve different relaxations of the problem, and a new dynamic programming method for generating routes. An exact algorithm based on the new lower bounds was also implemented to assess their effectiveness. Computational results over a large set of classical benchmark instances show that the proposed method improves most of the best known lower bounds for the open instances, and can solve several of these for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amberg A., Voß S.: A hierarchical relaxations lower bound for the capacitated arc routing problem. In: Sprague, H.R. (eds) Proceedings of the 35th Hawaii International Conference on System Sciences, vol. 3., pp. 1–10. IEEE Computer Society, Washington DC (2002)

    Google Scholar 

  2. Assad, A.A., Golden, B.L.: Arc routing methods and applications. In: Ball, M.O., Magnanti, T.L., Monma, C.L., Nemhauser, G.L. (eds.) Network Routing, North-Holland, Amsterdam (1995)

  3. Assad A.A., Pearn W.L., Golden B.L.: The capacitated postman problem: lower bounds and solvable cases. Am. J. Math. Manage. Sci. 7, 63–88 (1987)

    MathSciNet  MATH  Google Scholar 

  4. Baldacci R., Christofides N., Mingozzi A.: An exact algorithm for the vehicle routing problem based on the set partitioning formulation with additional cuts. Math. Program. A 115, 351–385 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Baldacci R., Maniezzo V.: Exact methods based on node-routing formulations for undirected arc-routing problems. Networks 47, 52–60 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Baldacci, R., Mingozzi, A., Roberti, R.: New route relaxation and pricing strategies for the vehicle routing problem. Oper. Res. (2011, to appear)

  7. Baldacci, R., Mingozzi, A., Roberti, R.: New state space relaxations for solving the traveling salesman problem with time windows. INFORMS J. Comput. doi:10.1287/ijoc.1110.0456 (2011)

  8. Belenguer J.M., Benavent E.: The capacitated arc routing problem: valid inequalities and facets. Comput. Optim. Appl. 10, 165–187 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Belenguer J.M., Benavent E.: A cutting plane algorithm for the capacitated arc routing problem. Comput. Oper. Res. 30, 705–728 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Benavent E., Campos V., Corberán A., Mota E.: The capacitated arc routing problem: lower bounds. Networks 22, 669–690 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  11. Beullens, P., Muyldermans, L.: Personal communication (2010)

  12. Beullens P., Muyldermans L., Cattrysse D., Van Oudheusden D.: A guided local search heuristic for the capacitated arc routing problem. Eur. J. Oper. Res. 147, 629–643 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Blais M., Laporte G.: Exact solution of the generalized routing problem through graph transformations. J. Oper. Res. Soc. 54, 906–910 (2003)

    Article  MATH  Google Scholar 

  14. Bode, C., Irnich, S.: Cut-first branch-and-price-second for the capacitated arc-routing problem. Technical Report LM-2011-01 (preliminary version), Chair of Logistics Management, Gutenberg School of Management and Economics, Johannes Gutenberg University, Mainz, Germany (2011)

  15. Christofides N.: The optimum traversal of a graph. Omega 1, 719–732 (1973)

    Article  Google Scholar 

  16. Christofides N., Mingozzi A., Toth P.: Exact algorithms for the vehicle routing problem based on spanning tree and shortest path relaxation. Math. Program. 20, 255–282 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  17. Corberán A., Prins C.: Recent results on arc routing problems: an annotated bibliography. Networks 56, 50–69 (2010)

    MathSciNet  MATH  Google Scholar 

  18. CPLEX: ILOG CPLEX 12.1 Callable Library. ILOG, Nevada (2008)

    Google Scholar 

  19. Dror, M. (eds): Arc Routing: Theory, Solutions and Applications. Kluwer, Boston (2000)

    MATH  Google Scholar 

  20. Eglese R.W.: Routeing winter gritting vehicles. Discr. Appl. Math. 48, 231–244 (1994)

    Article  MATH  Google Scholar 

  21. Eiselt H.A., Gendreau M., Laporte G.: Arc routing problems, part I: The Chinese postman problem. Oper. Res. 43, 231–242 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  22. Eiselt H.A., Gendreau M., Laporte G.: Arc routing problems, part II: The rural postman problem. Oper. Res. 43, 399–414 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  23. Fukasawa R., Longo H., Lysgaard J., Poggi de Aragão M., Reis M., Uchoa E., Werneck R.F.: Robust branch-and-cut-and-price for the capacitated vehicle routing problem. Math. Program. A 106, 491–511 (2006)

    Article  MATH  Google Scholar 

  24. Ghiani G., Improta G.: An efficient transformation of the generalized vehicle routing problem. Eur. J. Oper. Res. 122, 11–17 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Golden B.L., DeArmon J.S., Baker E.K.: Computational experiments with algorithms for a class of routing problems. Comput. Oper. Res. 10, 47–59 (1983)

    Article  MathSciNet  Google Scholar 

  26. Golden B.L., Wong R.T.: Capacitated arc routing problems. Networks 11, 305–315 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  27. Gómez-Cabrero, D., Belenguer, J.M., Benavent, E.: Cutting plane and column generation for the capacitated arc routing problem. Presented at ORP3 MEETING, Valencia, Spain (2005)

  28. Hirabayashi R., Nishida N., Saruwatari Y.: Node duplication lower bounds for the capacitated arc routing problems. J. Oper. Res. Soc. Jpn 35, 119 (1992)

    MathSciNet  MATH  Google Scholar 

  29. Jepsen M., Petersen B., Spoorendonk S., Pisinger D.: Subset-row inequalities applied to the vehicle routing problem with time windows. Oper. Res. 56, 497–511 (2008)

    Article  MATH  Google Scholar 

  30. Kiuchi, M., Shinano, Y., Hirabayashi, R., Saruwatari, Y.: An exact algorithm for the capacitated arc routing problem using parallel branch and bound method. In: Abstracts of the 1995 Spring National Conference of the Operations Research Society of Japan, pp. 28–29 (1995)

  31. Letchford A.N., Oukil A.: Exploiting sparsity in pricing routines for the capacitated arc routing problem. Comput. Oper. Res. 36, 2320–2327 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Li L.Y.O., Eglese R.W.: An interactive algorithm for vehicle routing for winter-gritting. J. Oper. Res. Soc. 47, 217–228 (1966)

    Google Scholar 

  33. Longo H., Poggi de Aragão M., Uchoa E.: Solving capacitated arc routing problems using a transformation to the CVRP. Comput. Oper. Res. 33, 1823–1837 (2006)

    Article  MATH  Google Scholar 

  34. Lysgaard, J.: CVRPSEP: A package of separation routines for the capacitated vehicle routing problem. Technical Report Working paper 03-04, Department of Management Science and Logistics, Aarhus School of Business, Denmark (2003)

  35. Lysgaard J., Letchford A.N., Eglese R.W.: A new branch-and-cut algorithm for the capacitated vehicle routing problem. Math. Program. A 100, 423–445 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  36. Martinelli, R., Pecin, D., Poggi de Aragão, M., Longo, H.: Column generation bounds for the capacitated arc routing problem. Presented at XLII SBPO, Bento Gonçalves, Brazil (2010)

  37. Padberg M.W., Rao M.R.: Odd minimum cut-sets and b-matchings. Math. Oper. Res. 1, 67–80 (1982)

    Article  MathSciNet  Google Scholar 

  38. Pearn W.L.: New lower bounds for the capacitated arc routing problem. Networks 18, 181–191 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  39. Santos L., Coutinho-Rodrigues J., Current J.R.: An improved ant colony optimization based algorithm for the capacitated arc routing problem. Transport. Res. B 44, 246–266 (2010)

    Article  Google Scholar 

  40. Win, Z.: Contributions to Routing Problems. PhD thesis, University of Augsburg, Germany (1987)

  41. Wøhlk S.: New lower bound for the capacitated arc routing problem. Comput. Oper. Res. 33, 3458–3472 (2006)

    Article  MathSciNet  Google Scholar 

  42. Wøhlk S.: A decade of capacitated arc routing. In: Golden, B.L., Raghavan, S., Wasil, A. (eds) The Vehicle Routing Problem: Latest Advances and New Challenges, Springer, New York (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Bartolini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bartolini, E., Cordeau, JF. & Laporte, G. Improved lower bounds and exact algorithm for the capacitated arc routing problem. Math. Program. 137, 409–452 (2013). https://doi.org/10.1007/s10107-011-0497-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-011-0497-4

Keywords

Mathematics Subject Classification (2000)

Navigation