Abstract
We consider the problem of constructing the convex envelope of a lower semi-continuous function defined over a compact convex set. We formulate the envelope representation problem as a convex optimization problem for functions whose generating sets consist of finitely many compact convex sets. In particular, we consider nonnegative functions that are products of convex and component-wise concave functions and derive closed-form expressions for the convex envelopes of a wide class of such functions. Several examples demonstrate that these envelopes reduce significantly the relaxation gaps of widely used factorable relaxation techniques.
Similar content being viewed by others
References
Al-Khayyal F.A., Falk J.E.: Jointly constrained biconvex programming. Math. Oper. Res. 8, 273–286 (1983)
Balas E.: Disjunctive programming. Ann. Discrete Math. 5, 3–51 (1979)
Balas E.: Disjunctive programming and hierarchy of relaxations for discrete optimization problems. SIAM J. Alg. Disc. Meth. 6, 466–486 (1985)
Bao X., Sahinidis N.V., Tawarmalani M.: Multiterm polyhedral relaxations for nonconvex, quadratically-constrained quadratic programs. Optim. Methods Softw. 24, 485–504 (2009)
Bertsekas D.: Convex Optimization Theory. Athena Scientific, Cambridge (2009)
Bussieck M.R., Drud A.S., Meeraus A.: MINLPLib—a collection of test models for mixed-integer nonlinear programming. INFORMS J. Comput. 15, 114–119 (2003)
Carathéodory C.: Uber den variabilitatsbereich der Fourierschen konstanten von positiven harmonischen funktionen. Rendiconto Circolo Matematico Palermo 32, 193–217 (1911)
Ceria S., Soares J.: Convex programming for disjunctive convex optimization. Math. Program. 86, 595–614 (1999)
Frangioni A., Gentile C.: Perspective cuts for a class of convex 0−1 mixed integer programs. Math. Program. 106, 225–236 (2006)
GLOBAL Library. http://www.gamsworld.org/global/globallib.htm
Grossmann I.E., Lee S.: Generalized convex disjunctive programming: nonlinear convex hull relaxation. Comput. Optim. Appl. 26, 83–100 (2003)
Günlük O., Linderoth J.: Perspective relaxation of mixed integer nonlinear programs with indicator variables. Lect. Notes Comput. Sci. 5035, 1–16 (2008)
Hiriart-Urruty J.-B., Lemaréchal C.: Fundamentals of Convex Analysis. Grundlehren Text Editions, New York (2001)
Jach M., Michaels D., Weismantel R.: The convex envelope of (n − 1)-convex functions. SIAM J. Optim. 19, 1451–1466 (2008)
Khajavirad, A., Sahinidis, N.V.: Convex envelopes of products of convex and component-wise concave functions. J. Global Optim. doi:10.1007/s10898-011-9747-5 (2011)
Lovász L.: Submodular functions and convexity. In: Bachem, A., Grotschel, M., Korte, B. (eds) Mathematical Programming: The State of the Art, pp. 235–257. Springer, Berlin (1982)
McCormick G.P.: Computability of global solutions to factorable nonconvex programs: Part I—Convex underestimating problems. Math. Program. 10, 147–175 (1976)
Meyer C.A., Floudas C.A.: Trilinear monomials with mixed sign domains: facets of the convex and concave envelopes. J. Global Optim. 29, 125–155 (2004)
Meyer C.A., Floudas C.A.: Convex envelopes for edge-concave functions. Math. Program. 103, 207–224 (2005)
Minkowski H.: Theorie der Knovexen Körper, insbesondere begrundung ihres oberfla chenbegriffs. In: Hilbert, D., Speiser, A., Weyl, H. (eds) Gesammelte Abhandlungen von Hermann Minkowski, vol. 2, pp. 131–229. Teubner, Leipsig (1911)
Nemhauser, G.L., Wolsey, L.A.: Integer and combinatorial optimization. Wiley Interscience, Series in Discrete Mathematics and Optimization, New York (1988)
Rikun A.D.: A convex envelope formula for multilinear functions. J. Global Optim. 10, 425–437 (1997)
Rockafellar R.T.: Convex Analysis. Princeton Mathematical Series. Princeton University Press, Princeton (1970)
Rockafellar R.T., Wets R.J.-B.: Variational Analysis. A Series of Comprehensive Studies in Mathematics. Springer, Berlin (1998)
Sahinidis N.V.: BARON: a general purpose global optimization software package. J. Global Optim. 8, 201–205 (1996)
Sherali H.D.: Convex envelopes of multilinear functions over a unit hypercube and over special discrete sets. Acta Math. Vietnam. 22, 245–270 (1997)
Stubbs R., Mehrotra S.: A branch and cut method for 0−1 mixed convex programming. Math. Program. 86, 515–532 (1999)
Tardella F.: Existence and sum decomposition of vertex polyhedral convex envelopes. Optim. Lett. 2, 363–375 (2008)
Tawarmalani, M.: Inclusion certificates and simultaneous convexification of functions. Math. Program. (submitted)
Tawarmalani M., Richard J.-P., Chung K.: Strong valid inequalities for orthogonal disjunctions and bilinear covering sets. Math. Program. 124, 481–512 (2010)
Tawarmalani, M., Richard, J.-P., Xiong, C.: Explicit convex and concave envelopes through polyhedral subdivisions. Math. Program. (submitted)
Tawarmalani M., Sahinidis N.V.: Semidefinite relaxations of fractional programs via novel techniques for constructing convex envelopes of nonlinear functions. J. Global Optim. 20, 137–158 (2001)
Tawarmalani M., Sahinidis N.V.: Convex extensions and convex envelopes of l.s.c. functions. Math. Program. 93, 247–263 (2002)
Tawarmalani M., Sahinidis N.V.: Global optimization of mixed-integer nonlinear programs: a theoretical and computational study. Math. Program. 99, 563–591 (2004)
Tawarmalani M., Sahinidis N.V.: A polyhedral branch-and-cut approach to global optimization. Math. Program. 103, 225–249 (2005)
Topkis D.M.: Supermodularity and Complementarity. Princeton University Press, Princeton (1998)
Author information
Authors and Affiliations
Corresponding author
Additional information
This research was supported in part by National Science Foundation award CMII-1030168.
Rights and permissions
About this article
Cite this article
Khajavirad, A., Sahinidis, N.V. Convex envelopes generated from finitely many compact convex sets. Math. Program. 137, 371–408 (2013). https://doi.org/10.1007/s10107-011-0496-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10107-011-0496-5
Keywords
- Convex envelope
- Global optimization
- Factorable relaxations
- Perspective transformation
- Submodular functions