KPCA method based on within-class auxiliary training samples and its application to pattern classification | Pattern Analysis and Applications Skip to main content
Log in

KPCA method based on within-class auxiliary training samples and its application to pattern classification

  • Theoretical Advances
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

Principal component analysis (PCA) and kernel principal component analysis (KPCA) are classical feature extraction methods. However, PCA and KPCA are unsupervised learning methods which always maximize the overall variance and ignore the information of within-class and between-class. In this paper, we propose a simple yet effective strategy to improve the performance of PCA and then this strategy is generalized to KPCA. The proposed methods utilize within-class auxiliary training samples, which are constructed through linear interpolation method. These within-class auxiliary training samples are used to train and get the principal components. In contrast with conventional PCA and KPCA, our proposed methods have more discriminant information. Several experiments are respectively conducted on XM2VTS face database, United States Postal Service (USPS) handwritten digits database and three UCI repository of machine learning databases, experimental results illustrate the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Christopher MB (2007) Pattern recognition and machine learning. Springer Press

  2. Muller KR, Mika S, Ratsch G et al (2001) An introduction to kernal-based learning algorithms. IEEE Trans Neural Networks 12(2):181–201

    Article  Google Scholar 

  3. Scholkopf B, Smola A, Muller K (1998) Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation 10(5):1000–1016

    Article  Google Scholar 

  4. Candes EJ, Li XD, Ma Y et al (2011) Robust principal component analysis? J ACM 58(3):1–37

    Article  MathSciNet  MATH  Google Scholar 

  5. Cwak N (2008) Principal component analysis based on L1-norm maximization. IEEE Trans Patt Anal Mach Intell 30(9):1672–1680

    Article  Google Scholar 

  6. Alzate C, Suykens JAK (2008) Kernel component analysis using an epsilon-insensitive robust loss function. IEEE Trans Neural Networks 1(9):1583–1598

    Article  Google Scholar 

  7. Huang SY, Yeh YR, Eguchi S (2009) Robust kernel principal component analysis. Neural Comp 21(11):3179–3213

    Article  MathSciNet  MATH  Google Scholar 

  8. Bach FR, Jordan MI (2002) Kernel independent component analysis. J Machine Learn Res 3:1–48

    MathSciNet  MATH  Google Scholar 

  9. Kim KI, Franz MO, Scholkopf B (2005) Iterative kernel principal component analysis for image modeling. IEEE Trans Patt Anal Mach Intell 27(9):1351–1366

    Article  Google Scholar 

  10. Gunter S, Schraudolph NN, Vishwanathan SVN (2007) Fast iterative kernel principal component analysis. J Mach Learn Res 8:1893–1918

    MathSciNet  MATH  Google Scholar 

  11. Li JB, Wang YH, Chu SC et al (2014) Kernel self-optimization learning for kernel-based feature extraction and recognition. Inform Sci 257:70–80

    Article  MathSciNet  MATH  Google Scholar 

  12. Ding M, Tian Z, Xu H (2010) Adaptive kernel principal component analysis. Signal Process 90(5):1542–1553

    Article  MATH  Google Scholar 

  13. Chin TJ, Suter D (2007) Incremental kernel principal component analysis. IEEE Trans Image Process 16(6):1662–1674

    Article  MathSciNet  Google Scholar 

  14. Wang L (2008) Feature selection with kernel class separability. IEEE Trans Patt Anal Mach Intell 30(9):1534–1546

    Article  Google Scholar 

  15. Kirby M, Sirovich L (1990) Application of the Karhunen-Loeve Procedure for the Characterization of Human Faces. IEEE Trans Patt Anal Mach Intell 112(1):102–108

    Google Scholar 

  16. Turk M, Pentland A (1991) Eigenfaces for recongnition. J Cogn Neurosci 3(1):71–86

    Article  Google Scholar 

  17. Zhou CJ, Wang L, Zhang Q et al (2013) Face Recognition Based on PCA Image Recostruction and LDA. Int J Light Elect Optics 124(22):5599–5603

    Article  Google Scholar 

  18. Yang J, Zhang D, Frangi AF et al (2004) Two-dimensional PCA: A new approach to appearance based face representation and recongnition. IEEE Trans Pattern Anal Mach Intell 26(1):131–137

    Article  Google Scholar 

  19. Yang J, Frangi AF, Yang JY et al (2005) KPCA plus LDA : A complete kernel Fisher discriminant framework for feature extraction and recongnition. IEEE Trans Patt Anal Mach Intell 27(2):230–244

    Article  Google Scholar 

  20. Zhao LH, Zhang XL, Xu XH (2007) Face recognition base on KPCA with polynomial kernels. International Conference on Wavelet Analysis and Pattern Recognition, ICWAPR2007, Beijing, pp 1213–1216

  21. Belhumeur PN, Hespanha JP, Kriegman DJ (1997) Eigenfaces vs. fisherfaces: Recongnition using class specific linear projection. IEEE Trans Pattern Anal Mach Intell 19(7):711–720

    Article  Google Scholar 

  22. Fernandes S, Bala J (2013) Performance analysis of PCA-based and LDA-based algorithms for face recognition. Int J Signal Process 1(1):1–6

  23. Shan S, Cao B, Su Y et al (2008) Unified principal component analysis with generalized covariance matrix for face recongnition. IEEE Conference on Computer Vision and Pattern Recongnition, CVPR 2008:1–7

    Google Scholar 

  24. Li ZC, Liu J, Tang JH et al (2015) Robust structured subspace learning for data representation. IEEE Trans Pattern Anal Mach Intell 37(10):2085–2098

    Article  Google Scholar 

  25. Li ZC, Liu J, Yang Y et al (2014) Clustering-guided sparse structural learning for unsupervised feature selection. IEEE Transactions on Knowledge and Data Engineering 26(9):2138–2150

    Article  Google Scholar 

  26. Sharma A, Dubey A, Tripathi P et al (2010) Pose invariant virtual classifiers from single training image using novel hybrid-eigenfaces. Neurocomputing 73(10):1868–1880

    Article  Google Scholar 

  27. Tang B, Luo S, Huang H (2003) High performance face recognition system by creating virtual sample. In: Proceedings of International Conference on Neural Networks and Signal Processing, pp 972–975

  28. Vetter T, Poggio T (1997) Linear object classes and image synthesis from a single example image. IEEE Trans Pattern Anal Mach Intell 19(7):733–742

    Article  Google Scholar 

  29. Tan XY, Chen SC, Zhou ZH et al (2006) Face recognition from a single image per person: A surcey. Pattern Recogn 36(9):1725–1745

    Article  MATH  Google Scholar 

  30. Xu Y, Li XL, Yang J et al (2014) Integrate the original face image and its mirror image for face recognition. Neurocomputing 131(5):191–199

    Article  Google Scholar 

  31. Xu Y, Zhu X, Li Z et al (2013) Using the original and ‘symmetrical face’ training samples to perform representation based two-step face recognition. Pattern Recognition 46(4):1151–1158

    Article  Google Scholar 

  32. Carlsson G (2009) Topology and data. Bull the Am Math Soc 46(2):255–308

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work is supported in part by the National Natural Science Foundation of China under grant No. 61373055 and No. 61103128.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojun Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Wu, X. & Yin, H. KPCA method based on within-class auxiliary training samples and its application to pattern classification. Pattern Anal Applic 20, 749–767 (2017). https://doi.org/10.1007/s10044-016-0531-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-016-0531-5

Keywords

Navigation