Binarization of degraded document images based on contrast enhancement | International Journal on Document Analysis and Recognition (IJDAR)
Skip to main content

Binarization of degraded document images based on contrast enhancement

  • Original Paper
  • Published:
International Journal on Document Analysis and Recognition (IJDAR) Aims and scope Submit manuscript

Abstract

Because of the different types of document degradation such as uneven illumination, image contrast variation, blur caused by humidity, and bleed-through, degraded document image binarization is still an enormous challenge. This paper presents a new binarization method for degraded document images. The proposed algorithm focuses on the differences of image grayscale contrast in different areas. Quadtree is used to divide areas adaptively. In addition, various contrast enhancements are selected to adjust local grayscale contrast in areas with different contrasts. Finally, the local threshold is regarded as the mean of foreground and background gray values, which are determined by the frequency of the gray values. The proposed algorithm was tested on the datasets from the Document Image Binarization Contest (DIBCO) (DIBCO 2009, H-DIBCO 2010, DIBCO 2011, and H-DIBCO 2012). Compared with five other classical algorithms, the images binarized using the proposed algorithm achieved the highest F-measure and peak signal-to-noise ratio and obtained the highest correct rate of recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. http://baike.baidu.com/link?url=hdU9FF9dpP8-x2hi1TNXNZdvydJNlhBUmtjf3-NOli6N-OfmwvAyLRerfozUyvh9UYCTwR3MXeWb9Jga_CJxLK

  2. Wen, J., Li, S., Sun, J.: A new binarization method for non-uniform illuminated document images. Pattern Recognit. 46, 1670–1690 (2012)

    Article  Google Scholar 

  3. Cheng, H.D., Chen, Y.H.: Fuzzy partition of two-dimensional histogram and its application to thresholding. Pattern Recognit. 32(5), 825–843 (1999)

    Article  Google Scholar 

  4. Cinque, L., Di Zenzo, S., Levialdi, S.: Image thresholding using fuzzy entropies. IEEE Trans. SMC 28(1), 2–15 (1998)

    Google Scholar 

  5. Papamarkos, N.: A technique for fuzzy document binarization. In: Proceedings of the 2001 ACM Symposium on Document Engineering, Atlanta, Georgia, USA, ACM, pp. 152–156 (2001)

  6. Chou, C.H., Lin, W.H., Chang, F.: A binarization method withl earning-built rules for document images produced by cameras. Pattern Recognit. 43, 1518–1530 (2010)

    Article  MATH  Google Scholar 

  7. Mesquita*, R.G. , Mello , C.A.B., Almeida,L.H.E.V.: A new thresholding algorithm for document images based on the perception of objects by distance. Integr. Comput.-Aided Eng. 21, 133–146 (2014)

  8. Otsu, N.: A threshold selectionmethod from gray level histograms. IEEE Trans. Syst. Man Cybern. 9, 62–66 (1979)

    Article  Google Scholar 

  9. Kapur, J.N., Sahoo, P.K., Wong, A.K.C.: A new method for graylevel picture thresholding using the entropy of the histogram. Comput. Vis. Graph. Image Process. 29, 273–285 (1985)

    Article  Google Scholar 

  10. Kittler, J., Illingworth, J.: Minimum error thresholding. Pattern Recognit. 19(1), 41–47 (1986)

    Article  Google Scholar 

  11. Abutaleb, A.S.: Automatic thresholding of gray-level pictures using two-dimensional entropy. Comput. Vis. Graph. Image Process. 47, 22–32 (1989)

    Article  Google Scholar 

  12. Bernsen, J.: Dynamic thresholding of grey-level images. In: Proceedings of ICPR’86, pp. 1251–1255 (1986)

  13. Niblack, W.: An Introduction to Digital Image Processing, pp. 115–116. Prentice-Hall, Englewood Cliffs (1986)

    Google Scholar 

  14. Sauvola, J., Pietikainen, M.: Adaptive document image binarization. Pattern Recognit. 33, 225–236 (2000)

    Article  Google Scholar 

  15. Kim, I.K., Jung, D.W., Park, R.H.: Document image binarization based on topographic analysis using a water flow model. Pattern Recognit. 35, 265–277 (2002)

    Article  MATH  Google Scholar 

  16. Valizadeh, M., Komeili, M., Armanfard, N., Kabir, E.: Degraded document image binarization based on combination of two complementary algorithms. In: Proceedings of ICACTEA’09, IEEE, pp. 595–599 (2009)

  17. Pai, Y.T., Pai, Y.F., Ruan, S.J.: Adaptive thresholding algorithm: efficient computation technique based on intelligent block detection for degraded document images. Pattern Recognit. 9, 3177–3187 (2010)

    Article  MATH  Google Scholar 

  18. Singh, B.M., Sharma, R., Ghosh, D., Mittal, A.: Adaptive binarization of severely degraded and non-uniformly illuminated documents. Proc. Int. J. Doc. Anal. Recognit. (IJDAR) 17(4), 393–412 (2014)

    Article  Google Scholar 

  19. Gatos, B., Pratikakis, I., Perantonis, S.J.: Adaptive degraded document image binarization. Pattern Recognit. 39, 317–327 (2006)

    Article  MATH  Google Scholar 

  20. Rosenfeld, A., Kak, A.C.: Digital Picture Processing, 2nd edn. Academic Press, New York (1982)

    MATH  Google Scholar 

  21. Users. iit. demokritos. gr/ bgat/ DIBCO 2009/ benchmark/

  22. Users. iit. demokritos. gr/ bgat/ H-DIBCO 2010/ benchmark/

  23. Utopia. duth. gr/ ipratika/ DIBCO 2011/ benchmark/

  24. Utopia. duth. gr/ ipratika/ HDIBCO 2012/ benchmark/

  25. Pratikakis, I., Gatos, B.,Ntirogiannis, K.: ICFHR2012 competition on handwritten document image binarization (H-DIBCO 2012). In: 2012 International Conference on Frontiers in Handwriting Recognition(ICFHR), pp. 813–818 (2012)

  26. http://www.abbyy.cn/finereader/

  27. http://www.freeocr.net/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, D., Huang, X. & Sui, L. Binarization of degraded document images based on contrast enhancement. IJDAR 21, 123–135 (2018). https://doi.org/10.1007/s10032-018-0299-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10032-018-0299-9

Keywords