El Niño-Southern Oscillation forecasting using complex networks analysis of LSTM neural networks | Artificial Life and Robotics Skip to main content

Advertisement

Log in

El Niño-Southern Oscillation forecasting using complex networks analysis of LSTM neural networks

  • Original Article
  • Published:
Artificial Life and Robotics Aims and scope Submit manuscript

Abstract

Arguably, El Niño-Southern Oscillation (ENSO) is the most influential climatological phenomenon that has been intensively researched during the past years. Currently, the scientific community knows much about the underlying processes of ENSO phenomenon, however, its predictability for longer horizons, which is very important for human society and the natural environment is still a challenge in the scientific community. Here we show an approach based on using various complex networks metrics extracted from climate networks with long short-term memory neural network to forecast ENSO phenomenon. The results suggest that the 12-network metrics extracted as predictors have predictive power and the potential for forecasting ENSO phenomenon longer multiple steps ahead.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. World Meteorological Organization (2014) El Niño-Southern Oscillation. WMO-No. 1145, ISBN: 978-92-63-11145-6

  2. Barnston AG, Tippett MK, L’Heureux ML, Li S, DeWitt DG (2012) Skill of real-time seasonal ENSO model predictions during 2002–2011: is our capability increasing? Bull Am Meteorol Soc 93(5):631–651

    Article  Google Scholar 

  3. Ludescher J, Gozolchiani A, Bogachev MI, Bunde A, Havlin S, Schellnhuber HJ (2014) Very early warning of next El Niño. Proc Natl Acad Sci USA 111(6):2064–2066

    Google Scholar 

  4. Ben Taieb S, Bontempi G, Atiya AF, Sorjamaa A (2012) A review and comparison of strategies for multi-step ahead time series forecasting based on the NN5 forecasting competition. Expert Syst Appl 39(8):7067–7083

    Article  Google Scholar 

  5. Zebiak SE, Cane MA (1987) A model El Niñ-Southern Oscillation. Mon Weather Rev 115:2262–2278

    Article  Google Scholar 

  6. Gers FA, Schmidhuber J, Cummins F (2000) Learning to forget: continual prediction with LSTM. Neural Comput 12(10):2451–2471

    Article  Google Scholar 

  7. Akram Zaytar M, El Amrani C (2016) Sequence to sequence weather forecasting with long short-term memory recurrent neural networks. IJCA 143(11):7–11

    Article  Google Scholar 

  8. Zhang Q, Wang H, Dong J, Zhong G, Sun X (2017) Prediction of sea surface temperature using long short-term memory. IEEE Geosci Remote Sens Lett 14(10):1745–1749

    Article  Google Scholar 

  9. Lipton ZC, Berkowitz J, Elkan C (2015), A critical review of recurrent neural networks for sequence learning. arXiv:1506.00019v4

  10. Li Y, Yang R, Yang C, Yu M, Hu F, Jiang Y (2017) Leveraging LSTM for rapid intensifications prediction of tropical cyclones. ISPRS Ann Photogramm Remote Sens Spatial Inf Sci IV-4/W2:101–105

    Article  Google Scholar 

  11. Hong C, Cho K-D, Kim H-J (2001) The relationship between ENSO events and sea surface temperature in the East (Japan) Sea. Prog Oceanogr 49(1–4):21–40

    Article  Google Scholar 

  12. Catto JL, Nicholls N, Jakob C (2012) North Australian sea surface temperatures and the El Niño–Southern Oscillation in observations and models. J Clim 25(14):5011–5029

    Article  Google Scholar 

  13. Tsonis AA, Roebber PJ (2004) The architecture of the climate network. Phys A 333:497–504

    Article  Google Scholar 

  14. Albert R, Barabási A-L (2002) Statistical mechanics of complex networks. Rev Mod Phys 74(1):47–97

    Article  MathSciNet  Google Scholar 

  15. Steinhaeuser K, Chawla NV, Ganguly AR (2010) Complex networks in climate science: progress, opportunities and challenges. In: Proceedings of the 2010 conference on intelligent data understanding, USA, pp 16–26

  16. Donner RV, Wiedermann M, Donges JF (2017) Complex network techniques for climatological data analysis. In: Franzke CLE, O’Kane TJ (eds) Nonlinear and stochastic climate dynamics. Cambridge University Press, Cambridge, pp 159–183

    Chapter  Google Scholar 

  17. Zanin M, Papo D, Sousa PA, Menasalvas E, Nicchi A, Kubik E, Boccaletti S (2016) Combining complex networks and data mining: why and how. Phys Rep 635:1–44

    Article  MathSciNet  Google Scholar 

  18. Steinhaeuser K, Chawla NV, Ganguly AR (2011) Complex networks as a unified framework for descriptive analysis and predictive modeling in climate science. Stat Anal Data Min 4(5):497–511

    Article  MathSciNet  Google Scholar 

  19. Saha M, Mitra P (2015) Climate network based index discovery for prediction of Indian monsoon. In: Kryszkiewicz M, Bandyopadhyay S, Rybinski H, Pal SK (eds) Pattern recognition and machine intelligence 9124. Springer International Publishing, Cham, pp 554–564

    Chapter  Google Scholar 

  20. Sencan H, Chen Z, Hendrix W, Pansombut T, Semazzi F, Choudhary A, Kumar V, Melechko AV, Samatova NF (2011), Classification of emerging extreme event tracks in multivariate spatio-temporal physical systems using dynamic network structures: application to hurricane track prediction. In: IJCAI’11 proceedings of the twenty-second international joint conference on artificial intelligence, Barcelona, Spain, vol 2, pp 1478–1484

  21. van der Linden JH, Narsilio GA, Tordesillas A (2016) Machine learning framework for analysis of transport through complex networks in porous, granular media: a focus on permeability. Phys Rev E 94(2–1):022904

    Article  Google Scholar 

  22. Jamal W, Das S, Oprescu I-A, Maharatna K, Apicella F, Sicca F (2014) Classification of autism spectrum disorder using supervised learning of brain connectivity measures extracted from synchrostates. J Neural Eng 11(4):046019

    Article  Google Scholar 

  23. Dijkstra HA (2006) The ENSO phenomenon: theory and mechanisms. Adv Geosci 6:3–15

    Article  Google Scholar 

  24. Landsea CW, Knaff JA (2000) How much skill was there in forecasting the very strong 1997–1998 El Niño? Bull Am Meteorol Soc 81:2107–2119

    Article  Google Scholar 

  25. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds B, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Roy J, Dennis J (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–472

    Article  Google Scholar 

  26. Huang B, Thorne PW, Banzon VF, Boyer T, Chepurin G, Lawrimore JH, Menne MJ, Smith TM, Vose RS, Zhang H-M (2017) Extended reconstructed sea surface temperature, version 5: upgrades, validations, and intercomparisons. J Clim 30(20):8179–8205

    Article  Google Scholar 

  27. Radebach A, Donner RV, Runge J, Donges JF, Kurths J (2013) Disentangling different types of El Niño episodes by evolving climate network analysis. Phys Rev E Stat Nonlin Soft Matter Phys 88(5):052807

    Article  Google Scholar 

  28. Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780

    Article  Google Scholar 

  29. Gers FA, Eck D, Schmidhuber J (2002) Applying LSTM to time series predictable through time-window approaches. In: Tagliaferri R, Marinaro M (eds) Neural nets WIRN Vietri-01. Springer, London, London, pp 193–200

    Chapter  Google Scholar 

  30. Sutskever I, Vinyals O, Le QV (2014) Sequence to sequence learning with neural networks. arXiv:1409.3215

  31. Donges JF, Zou Y, Marwan N, Kurths J (2009) Complex networks in climate dynamics: comparing linear and nonlinear network construction methods. Eur Phys J Spec Topics 174(1):157–179

    Article  Google Scholar 

  32. Donges JF, Heitzig J, Beronov B, Wiedermann M, Runge J, Feng QY, Tupikina L, Stolbova V, Donner RV, Marwan N, Dijkstra HA, Kurths J (2015) Unified functional network and nonlinear time series analysis for complex systems science: the pyunicorn package. Chaos 25(11):113101

    Article  MathSciNet  Google Scholar 

  33. LdaF Costa, Rodrigues FA, Travieso G, Villas Boas PR (2007) Characterization of complex networks: a survey of measurements. Adv Phys 56(1):167–242

    Article  Google Scholar 

  34. Barnston A (2014) How good have ENSO forecasts been lately?. National Oceanic and Atmospheric Administration (NOAA). https://www.climate.gov/news-features/blogs/enso/how-good-have-enso-forecasts-been-lately. Accessed 20 Mar 2017

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clifford Broni-Bedaiko.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Broni-Bedaiko, C., Katsriku, F.A., Unemi, T. et al. El Niño-Southern Oscillation forecasting using complex networks analysis of LSTM neural networks. Artif Life Robotics 24, 445–451 (2019). https://doi.org/10.1007/s10015-019-00540-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10015-019-00540-2

Keywords

Navigation