Consumption-investment problem with transaction costs for Lévy-driven price processes | Finance and Stochastics Skip to main content
Log in

Consumption-investment problem with transaction costs for Lévy-driven price processes

  • Published:
Finance and Stochastics Aims and scope Submit manuscript

Abstract

We consider an optimal control problem for a linear stochastic integro-differential equation with conic constraints on the phase variable and with the control of singular–regular type. Our setting includes consumption-investment problems for models of financial markets in the presence of proportional transaction costs, where the prices of the assets are given by a geometric Lévy process, and the investor is allowed to take short positions. We prove that the Bellman function of the problem is a viscosity solution of an HJB equation. A uniqueness theorem for the solution of the latter is established. Special attention is paid to the dynamic programming principle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aït-Sahalia, Y., Cacho-Diaz, J., Hurd, T.: Portfolio choice with jumps: A closed form solution. Ann. Appl. Probab. 19, 556–584 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aït-Sahalia, Y., Matthys, F.H.A.: Robust portfolio optimization with jumps. Working paper, Princeton. Available online at: http://scholar.princeton.edu/fmatthys/research (2015)

  3. Akian, M., Menaldi, J.L., Sulem, A.: On an investment-consumption model with transaction costs. SIAM J. Control Optim. 34, 329–364 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alvarez, O., Tourin, A.: Viscosity solutions of nonlinear integro-differential equations. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 13, 293–317 (1996)

    MathSciNet  MATH  Google Scholar 

  5. Arisawa, M.: A new definition of viscosity solutions for a class of second-order degenerate elliptic integro-differential equations. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 23, 695–711 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Arisawa, M.: A remark on the definitions of viscosity solutions for the integro-differential equations with Lévy operators. J. Math. Pures Appl. 89, 567–574 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Aubin, J.-P.: Optima and Equilibria. An Introduction to Nonlinear Analysis. Springer, Berlin–Heidelberg–New York (1993)

    MATH  Google Scholar 

  8. Barles, G., Chasseigne, E., Imbert, C.: The Dirichlet problem for second-order elliptic integro-differential equations. Indiana Univ. Math. J. 57, 213–246 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Barles, G., Imbert, C.: Second-order elliptic integro-differential equations: Viscosity solutions’ theory revisited. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 25, 567–585 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Benth, F.E., Karlsen, K.H., Reikvam, K.: Portfolio optimization in a Lévy market with intertemporal substitution and transaction costs. Stoch. Stoch. Rep. 74, 517–569 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Benth, F.E., Karlsen, K.H., Reikvam, K.: Optimal portfolio management rules in a non-Gaussian market with durability and intertemporal substitution. Finance Stoch. 5, 447–467 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Campi, L., Owen, M.P.: Multivariate utility maximization with proportional transaction cost. Finance Stoch. 15, 461–499 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Crandall, M., Ishii, H., Lions, P.-L.: User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. 277, 1–42 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cvitanić, J., Polimenis, V., Zapatero, F.: Optimal portfolio allocation with higher moments. Ann. Finance 4, 1–28 (2008)

    Article  MATH  Google Scholar 

  15. Davis, M., Norman, A.: Portfolio selection with transaction costs. Math. Oper. Res. 15, 676–713 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  16. Emmer, S., Klüppelberg, C.: Optimal portfolios when stock prices follow an exponential Lévy process. Finance Stoch. 8, 17–44 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Framstad, N.C., Øksendal, B., Sulem, A.: Optimal consumption and portfolio in a jump diffusion market with proportional transaction costs. J. Math. Econ. 35, 233–257 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ishikawa, Y.: Optimal control problem associated with jump processes. Appl. Math. Optim. 50, 21–65 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jacobsen, E.R., Karlsen, K.H.: Continuous dependence estimates for viscosity solutions of integro-PDEs. J. Differ. Equ. 212, 278–318 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jacod, J., Shiryaev, A.N.: Limit Theorems for Stochastic Processes, 2nd edn. Springer, Berlin (2002)

    MATH  Google Scholar 

  21. Janec̆ek, K.: What is a realistic aversion to risk for real-world individual investors? Working paper. Available online at: http://www.sba21.com/personal/ (2004)

  22. Kabanov, Yu.M., Klüppelberg, C.: A geometric approach to portfolio optimization in models with transaction costs. Finance Stoch. 8, 207–227 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kabanov, Yu.M., Safarian, M.: Markets with Transaction Costs: Mathematical Theory. Springer, Berlin–Heidelberg–New York (2009)

    MATH  Google Scholar 

  24. Merton, R.C.: Optimum consumption and portfolio rules in a continuous time model. J. Econ. Theory 3, 373–413 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  25. Pham, H.: Optimal stopping of controlled jump-diffusion processes: A viscosity solutions approach. J. Math. Syst. Estim. Control 8, 1–27 (1998)

    Google Scholar 

  26. Sayah, A.: Equations d’Hamilton–Jacobi du premier ordre avec termes intégro-différentiels, I, II. Commun. Partial Differ. Equ. 16, 1057–1093 (1991)

    Article  MATH  Google Scholar 

  27. Shreve, S., Soner, M.: Optimal investment and consumption with transaction costs. Ann. Appl. Probab. 4, 609–692 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  28. Soner, H.M.: Optimal control with state space constraint II. SIAM J. Control Optim. 24, 1110–1122 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  29. Soner, H.M.: Optimal control of jump-Markov processes and viscosity solutions. In: Fleming, W., Lions, P.-L. (eds.) Stochastic Differential Systems, Stochastic Control Theory and Applications. IMA Vols. in Mathematics and Its Applications, vol. 10, pp. 501–511. Springer, New York (1988)

    Chapter  Google Scholar 

Download references

Acknowledgements

The research is funded by the grant \(n^{\circ}\)14.A12.31.0007 of the Government of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri Kabanov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Vallière, D., Kabanov, Y. & Lépinette, E. Consumption-investment problem with transaction costs for Lévy-driven price processes. Finance Stoch 20, 705–740 (2016). https://doi.org/10.1007/s00780-016-0303-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00780-016-0303-5

Keywords

Mathematics Subject Classification (2000)

JEL Classification

Navigation