Automated employee evaluation using fuzzy and neural network synergism through IoT assistance | Personal and Ubiquitous Computing Skip to main content

Advertisement

Log in

Automated employee evaluation using fuzzy and neural network synergism through IoT assistance

  • Original Article
  • Published:
Personal and Ubiquitous Computing Aims and scope Submit manuscript

Abstract

In today’s dynamic environment, an appropriate performance evaluation method for industries is a complex problem considering its funding scale. Performance evaluation in present industries has become a key part of the strategic approach. Existing performance evaluation approaches are based on manual estimations. These are prone to bias and nepotism, and hence, these manual evaluation schemes may demotivate the employees. In order make this evaluation solely performance oriented, the authors have proposed a neuro-fuzzy-based framework. For detecting and tracking the employee activities, Internet of things (IoT)–enabled sensors are used, while artificial neural fuzzy inference system (ANFIS) is used for learning and automated decision optimization. With an accuracy rate of 94.7% and an estimated RMSE error value of 0.0717, the proposed framework is fit for adaption in any real-life industrial scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Ahmed I, Sultana I, Paul SK, Azeem A (2013) Employee performance evaluation: a fuzzy approach. Int J Product Perform Manag 62(7):718–734

    Article  Google Scholar 

  2. Hui L, Qin-xuan G (2009) Performance appraisal: what’s the matter with you? Procedia Earth and Planetary Science 1(1):1751–1756

    Article  Google Scholar 

  3. Ranjan R, Mishra U (2017) Impact of rewards on employee performance: a case of Indian oil corporation, Patna Region. IOSR J Bus Manag (IOSR-JBM), e-ISSN: 2278-487X, p-ISSN: 2319–7668. Ver. II 19(6):22–30

    Article  Google Scholar 

  4. Da Xu L, He W, Li S (2014) Internet of things in industries: a survey. IEEE Trans Ind Inf 10(4):2233–2243

    Article  Google Scholar 

  5. Fang S, Da Xu L, Zhu Y, Ahati J, Pei H, Yan J, Liu Z (2014) An integrated system for regional environmental monitoring and management based on internet of things. IEEE Trans Ind Inf 10(2):1596–1605

    Article  Google Scholar 

  6. Tsai CW, Lai CF, Chiang MC, Yang LT (2014) Data mining for internet of things: a survey. IEEE Commun Surv Tutorials 16(1):77–97

    Article  Google Scholar 

  7. Shekhar S, Huang Y (2001) Discovering spatial co-location patterns: a summary of results. In: Jensen CS, Schneider M, Seeger B, Tsotras VJ (eds) Advances in Spatial and Temporal Databases. LNCS 2121. Springer, Berlin, Heidelberg, pp 236–256

  8. Yao X, Chen L, Wen C, Peng L, Yang L, Chi T et al (2018) A spatial co-location mining algorithm that includes adaptive proximity improvements and distant instance references. Int J Geogr Inf Sci:1–26

  9. Žunić E, Djedović A, Avdagić Z (2016) Decision support system for candidates classification in the employment process based on ANFIS method. In: 2016 XI International Symposium on Telecommunications (BIHTEL). https://doi.org/10.1109/BIHTEL.2016.7775718

  10. Jang JS (1993) ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern 23(3):665–685

    Article  Google Scholar 

  11. Jang JSR, Sun CT, Mizutani E (1997) Neuro-fuzzy and soft computing; a computational approach to learning and machine intelligence. Prentice Hall, Englewood Cliffs, NJ

  12. Kaur J, Kaur K (2017) A fuzzy approach for an IoT-based automated employee performance appraisal. Computers, Materials and Continua 53(1):24–38

  13. Kaur N, Sood SK (2015) A game theoretic approach for an IoT-based automated employee performance evaluation. IEEE Syst J 11(3):1385–1394

  14. Fragiadakis NG, Tsoukalas VD, Papazoglou VJ (2014) An adaptive neuro-fuzzy inference system (ANFIS) model for assessing occupational risk in the shipbuilding industry. Saf Sci 63:226–235

    Article  Google Scholar 

  15. Aksoy A, Öztürk N, Sucky E (2014) Demand forecasting for apparel manufacturers by using neuro-fuzzy techniques. Journal of Modelling in Management 9(1):18–35

    Article  Google Scholar 

  16. Warne K, Prasad G, Siddique NH, Maguire LP (2004) Development of a hybrid PCA-ANFIS measurement system for monitoring product quality in the coating industry. In Systems, man and cybernetics, 2004 IEEE International Conference on (Vol. 4, pp. 3519–3524). IEEE

  17. Mammadova M, Jabrayilova Z (2014) Application of fuzzy optimization method in decision-making for personnel selection. Intell Control Autom 5(04):190–204

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keshav Dhir.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhir, K., Chhabra, A. Automated employee evaluation using fuzzy and neural network synergism through IoT assistance. Pers Ubiquit Comput 23, 43–52 (2019). https://doi.org/10.1007/s00779-018-1186-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00779-018-1186-6

Keywords

Navigation