A multiscale approach to network event identification using geolocated twitter data | Computing Skip to main content
Log in

A multiscale approach to network event identification using geolocated twitter data

  • Published:
Computing Aims and scope Submit manuscript

Abstract

The large volume of data associated with social networks hinders the unaided user from interpreting network content in real time. This problem is compounded by the fact that there are limited tools available for enabling robust visual social network exploration. We present a network activity visualization using a novel aggregation glyph called the clyph. The clyph intuitively combines spatial, temporal, and quantity data about multiple network events. We also present several case studies where major network events were easily identified using clyphs, establishing them as a powerful aid for network users and owners.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Brandes U, Nick B (2011) Asymmetric relations in longitudinal social networks. IEEE Trans Vis Comput Graph 17:2283–2290. doi:10.1109/TVCG.2011.169

    Google Scholar 

  2. Cho E, Myers S, Leskovec J (2011) Friendship and mobility: user movement in location-based social networks. In: ACM Knowledge Discovery and Data Mining, pp 1082–1090

  3. Cui W, Zhou H, Qu H, Wong P, Li X (2008) Geometry-based edge clustering for graph visualization. IEEE Trans Vis Comput Graph 14(6):1277–1284. doi:10.1109/TVCG.2008.135

    Article  Google Scholar 

  4. Groh G, Hanstein H, Worndl W (2009) Interactively visualizing dynamic social networks with dyson. In: Vis. Inter. to the Soc. and the Sem. http://data.semanticweb.org/workshop/VISSW/2009/paper/main/10

  5. Guo D (2009) Flow mapping and multivariate visualization of large spatial interaction data. IEEE Trans. Vis Comput Graph 15(6):1041–4148. doi:10.1109/TVCG.2009.143

    Article  Google Scholar 

  6. Guo D, Chen J, MacEachren A, Liao K (2006) A visualization system for space-time and multivariate patterns (vis-stamp). IEEE Trans Vis Comput Graph 12(6):1461–1474. doi:10.1109/TVCG.2006.84

    Article  Google Scholar 

  7. Guo D, Gahegan M, Maceachren A, Zhou B (2005) Multivariate analysis and geovisualization with an integrated geographic knowledge discovery approach. Cartogr Geogr Inf Sci 32:113–132

    Article  Google Scholar 

  8. Heer J, Boyd D (2005) Vizster: visualizing online social networks. In: IEEE InfoVis, pp 32–39

  9. Holten D, van Wijk J (2009) Force-directed edge bundling for graph visualization. Comput Graph Forum 28(3):983–990

    Article  Google Scholar 

  10. Keim D, Kriege H (1996) Visualization techniques for mining large databases: a comparison. IEEE Trans Knowl Data Eng 8:923–938

    Article  Google Scholar 

  11. Luo W, MacEachren A, Yin P, Hardisty F (2011) Spatial-social network visualization for exploratory data analysis. In: Workshop on Location-Based Social Networks, pp 65–68

  12. Modest maps. http://www.modestmaps.com/

  13. Moody J, Farland DM, Bender-deMoll S (2005) Dynamic network visualization. Am J Sociol 110(4):1206–1241. doi:10.1086/421509

    Article  Google Scholar 

  14. Newman M (2003) Fast algorithm for detecting community structure in networks. Phys Rev E 69. http://arxiv.org/abs/cond-mat/0309508

  15. Perer A, Shneiderman B (2006) Balancing systematic and flexible exploration of social networks. IEEE Trans Vis. Comput Graph 12(5):693–700. doi:10.1109/TVCG.2006.122

    Article  Google Scholar 

  16. Phan D, Xiao L, Yeh R, Hanrahan P, Winograd T (2005) Flow map layout. In: IEEE InfoVis, pp 219–224

  17. Rae A (2009) From spatial interaction data to spatial interaction information? Geovisualisation and spatial structures of migration from the 2001 UK census. Comput Environ Urban Syst 33(3):161–178. doi:10.1016/j.compenvurbsys.2009.01.007

    Article  MathSciNet  Google Scholar 

  18. Reas C, Fry B (2005) Processing.org: a networked context for learning computer programming. In: ACM SIGGRAPH 2005 Web program

  19. Shneiderman B, Aris A (2006) Network visualization by semantic substrates. IEEE Trans Vis Comput Graph 12(5)

Download references

Acknowledgments

This work was funded in part by DOE NETL and NSF CDI-0835821.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Yang.

Additional information

First IMC Workshop on Internet Visualization (WIV 2012), November 13, 2012, Boston, MA, USA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, C., Jensen, I. & Rosen, P. A multiscale approach to network event identification using geolocated twitter data. Computing 96, 3–13 (2014). https://doi.org/10.1007/s00607-013-0285-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00607-013-0285-5

Keywords

Mathematics Subject Classification

Navigation