Two-grid algorithms for some linear and nonlinear elliptic systems | Computing
Skip to main content

Two-grid algorithms for some linear and nonlinear elliptic systems

  • Published:
Computing Aims and scope Submit manuscript

Abstract

In this paper, several two-grid algorithms are presented. For nonsymmetric linear systems, we propose a two-grid algorithm by using the information of the adjoint operator. The solution of the original systems is mainly reduced to a solution of symmetric positive definite (SPD) systems. For nonlinear systems, we present a two-grid algorithm based on the modified Newton method. The solution of the original systems on the fine space is reduced to the solution of two small systems on the coarse space and two similar linear systems (with same stiffness matrix) on the fine space. It is shown that the accuracy (\({\mathcal{L}^2}\) norm) obtained by this algorithm is as same as the optimal accuracy derived by using two full Newton steps. Additionally, for more practically applications, the ideas of these algorithms can be also extended to the multilevel case. Numerical experiments are given for these new algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Antal I, Karàtson J (2008) A mesh indepengent superlinear algorithm for some nonlinear nonsymmetric elliptic systems. Comput Math Appl 55: 2185–2196

    Article  MATH  MathSciNet  Google Scholar 

  2. Axelsson O (1993) On mesh indepengence and Newton-type methods. Appl Math 38: 249–265

    MATH  MathSciNet  Google Scholar 

  3. Axelsson O, Layton W (1996) A two-level discretization of nonlinear boundary value problems. SIAM J Numer Anal 33: 2359–2375

    Article  MATH  MathSciNet  Google Scholar 

  4. Axelsson O, Padiy A (2000) On a two-level Newton type procedure applied for solving nonlinear elasticity problems. Int J Numer Math Eng 49: 1479–1493

    Article  MATH  MathSciNet  Google Scholar 

  5. Bank R (1981) A comparison of two multilevel iterative methods for nonsymmetric and indefinite elliptic finite element equations. SIAM J Numer Anal 18(4): 724–743

    Article  MATH  MathSciNet  Google Scholar 

  6. Bank R, Dupont T (1981) An optimal process for solving finite element equations. Math Comput 36: 35–51

    MATH  MathSciNet  Google Scholar 

  7. Bank R, Rose D (1982) Analysis of a multilevel iterative method for nonlinear finite element equations. Math Comput 160: 453–465

    MathSciNet  Google Scholar 

  8. Bi CJ, Ginting V (2007) Two-grid finite volume element method for linear and nonlinear elliptic problems. Numer Math 108: 177–198

    Article  MATH  MathSciNet  Google Scholar 

  9. Brent R (1973) Some efficient algorithms for solving systems of nonlinear equations. SIAM J Numer Anal 10: 327–344

    Article  MATH  MathSciNet  Google Scholar 

  10. Brenner S, Scott R (1994) The mathematical theory of finite element methods. Springer, New York

    MATH  Google Scholar 

  11. Cai XC (1993) A optimal two-level overlapping domain decomposition method for elliptic problems in two or three dimensions. SIAM J Sci Comput 14(1): 239–247

    Article  MATH  MathSciNet  Google Scholar 

  12. Ciarlet PG (1978) The finite element method for elliptic problems. North-Holland, Amsterdam

    MATH  Google Scholar 

  13. Dai X, Cheng XL (2008) A two-grid method based on Newton iteration for the Navier–Stokes equtions. J Comput Appl Math 220: 566–573

    Article  MATH  MathSciNet  Google Scholar 

  14. Dawson CN, Wheeler MF, Woodward CS (1998) A two-grid finite difference scheme for nonlinear parabolic equation. SIAM J Numer Anal 35: 435–452

    Article  MATH  MathSciNet  Google Scholar 

  15. Hackbusch W (1985) Multi-grid methods and applications. Springer, Heidelberg

    MATH  Google Scholar 

  16. He Y, Li K (2005) Two-level stabilized finite element methods for the Steady Navier–Stokes problem. Computing 74: 337–351

    Article  MATH  MathSciNet  Google Scholar 

  17. Huang YQ, Shi ZC, Tang T, Xue WM (2003) A multilevel successive iteration method for nonlinear elliptic problems. Math Comput 73: 525–539

    Article  MathSciNet  Google Scholar 

  18. Karátson J, Kurics T (2008) Superlineary convergent PCG algorithms for some nonsymmetric elliptic systems. J Comput Appl Math 212: 214–230

    Article  MATH  MathSciNet  Google Scholar 

  19. Kwon K, Yazιcι B, Guven M (2006) Two-level domain decomposition methods for diffuse optical tomography. Inverse Probl 22: 1533–1559

    Article  MATH  Google Scholar 

  20. Layton W, Tobiska L (1998) A two-level method with backtracking for the Navier–Stokes equations. SIAM J Numer Anal 35: 2035–2054

    Article  MATH  MathSciNet  Google Scholar 

  21. Layton W, Meir A, Schmidt P (1997) A two-level discretization method for the stationary NHD equations. Electron Trans Numer Anal 6: 198–210

    MATH  MathSciNet  Google Scholar 

  22. McCormick S (1994) Multilevel adaptive methods for elliptic eigenproblems: a two-level convergence theory. SIAM J Numer Anal 31(6): 1731–1745

    Article  MATH  MathSciNet  Google Scholar 

  23. Tachim MT, Temam R (2008) A two-grid finite difference method for the primitive equations of the ocean. Nonlinear Anal 69: 1034–1056

    Article  MATH  MathSciNet  Google Scholar 

  24. Xu J (1996) Two-grid discretization techinques for linear and nonlinear PDEs. SIAM J Numer Anal 33: 1759–1777

    Article  MATH  MathSciNet  Google Scholar 

  25. Xu J (1994) A novel two-grid method for semilinear equations. SIAM J Sci Comput 15: 231–237

    Article  MATH  MathSciNet  Google Scholar 

  26. Xu J (1992) A new class of iterative methods for nonselfadjoint or indefinite problems. SIAM J Numer Anal 29: 303–319

    Article  MATH  MathSciNet  Google Scholar 

  27. Xu J, Zhou A (2001) Local and parallel finite element algorithms based on two-grid discretization for nonlinear problems. Adv Comput Math 14: 293–327

    Article  MATH  MathSciNet  Google Scholar 

  28. Xu X (1999) Multilevel methods for Wilson element approximation of elasticity problem. Comput Methods Appl Mech Eng 174: 191–201

    Article  MATH  Google Scholar 

  29. Zlatev Z (1995) Computer treatment of large air pollution models. Kluwer, Dordrecht

    Google Scholar 

  30. Zeng S, Wesseling P (1994) Multigrid solution of the incompressible Navier–Stokes equations in general coordinates. SIAM J Numer Anal 31(6): 1764–1784

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengda Huang.

Additional information

Communicated by C.C. Douglas.

This research was supported by the National Natural Science Foundation of China (Grant No. 10731060).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, S., Huang, Z. Two-grid algorithms for some linear and nonlinear elliptic systems. Computing 89, 69–86 (2010). https://doi.org/10.1007/s00607-010-0095-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00607-010-0095-y

Keywords

Mathematics Subject Classification (2010)