Summary
The Boundary Element Tearing and Interconnecting (BETI) methods were recently introduced as boundary element counterparts of the well established Finite Element Tearing and Interconnecting (FETI) methods. Here we combine the BETI method preconditioned by the projector to the “natural coarse grid” with recently proposed optimal algorithms for the solution of bound and equality constrained quadratic programming problems in order to develop a theoretically supported scalable solver for elliptic multidomain boundary variational inequalities such as those describing the equilibrium of a system of bodies in mutual contact. The key observation is that the “natural coarse grid” defines a subspace that contains the solution, so that the preconditioning affects also the non-linear steps. The results are validated by numerical experiments.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Axelsson O. (1994). Iterative solution methods. Cambridge University Press, Cambridge
Bertsekas D.P. (1999). Nonlinear optimization. Athena Scientific, Belmont
Bouchala, J., Dostál, Z., Sadowská, M.: Solution of boundary variational inequalities by combining fast quadratic programming algorithms with symmetric BEM. Advances in Boundary Integral Methods – Proc. UK Conf. on Boundary Integral Methods, University of Liverpool, pp. 221–228 (2005)
Bouchala, J., Dostál, Z., Sadowská, M.: Solving 2D contact problem by boundary element tearing and interconnecting method. Advances in Boundary Integral Methods – Proc. 6th UK Conf. on Boundary Integral Methods, pp. 63–70, Durham University (2007)
Bouchala, J., Dostál, Z., Sadowská, M.: All floating duality based solver for multidomain variational inequalities discretized by BEM (submitted)
Börm, S., Grasedyck, L., Hackbusch, W.: Hierarchical matrices. Max Planck Institute for Mathematics in the Sciences, Leipzig (2003)
Conn A.R., Gould N.I.M. and Toint Ph.L. (1991). A globally convergent augmented Lagrangian algorithm for optimization with general constraints and simple bounds. SIAM J Numer Anal 28: 545–572
Costabel M. (1988). Boundary integral operators on Lipschitz domains: Elementary results. SIAM J Math Anal 19: 613–626
Dostál Z. (1999). On preconditioning and penalized matrices. Numer Linear Algebra Appl 6: 109–114
Dostál Z. (2005). Inexact semimonotonic augmented Lagrangians with optimal feasibility convergence for convex bound and equality constrained quadratic programming. SIAM J Numer Anal 43: 96–115
Dostál Z. (2006). An optimal algorithm for bound and equality constrained quadratic programming problems with bounded spectrum. Computing 78: 311–328
Dostál Z., Friedlander A. and Santos S.A. (2003). Augmented Lagrangians with adaptive precision control for quadratic programming with simple bounds and equality constraints. SIAM J Optim 13: 1120–1140
Dostál Z., Gomes F.A.M. and Santos S.A. (2000). Duality based domain decomposition with natural coarse space for variational inequalities. J Comput Appl Math 126: 397–415
Dostál Z. and Horák D. (2003). Scalability and FETI based algorithm for large discretized variational inequalities. Math Comput Simul 61: 347–357
Dostál Z. and Horák D. (2007). Theoretically supported scalable FETI for numerical solution of variational inequalities. SIAM J Numer Anal 45: 500–513
Dostál Z., Horák D. and Kučera R. (2006). Total FETI – an easier implementable variant of the FETI method for numerical solution of elliptic PDE. Commun Numer Meth Engng 22: 1155–1162
Dostál Z., Malík J., Friedlander A. and Santos S.A. (1996). Analysis of semicoercive contact problems using symmetric BEM and augmented Lagrangians. Eng Anal Bound El 18: 195–201
Dostál Z., Horák D. and Stefanica D. (2005). A scalable FETI–DP algorithm for coercive variational inequalities. IMACS J Appl Numer Math 54: 378–390
Dostál Z. and Schöberl J. (2005). Minimizing quadratic functions subject to bound constraints with the rate of convergence and finite termination. Comput Opt Appl 30: 23–43
Dostál, Z., Vondrák, V., Rasmussen, J.: FETI based semianalytic sensitivity analysis in contact shape optimization. In: (Hoffmann, K. H., Hoppe, R. H. W., Schulz, V., eds.) Fast solution of discretized optimization problems. International Series of Numerical Mathematics, vol. 138, pp. 98–106, Birkhäuser (2001)
Dureisseix D. and Farhat C. (2001). A numerically scalable domain decomposition method for solution of frictionless contact problems. Int J Numer Meth Engng 50: 2643–2666
Eck C., Steinbach O. and Wendland W.L. (1999). A symmetric boundary element method for contact problems with friction. Math Comput Simul 50: 43–61
Farhat C., Lesoinne M., LeTallec P., Pierson K. and Rixen D. (2001). FETI–DP: A dual-prime unified FETI method – part I: A faster alternative to the two-level FETI method. Int J Numer Meth Engng 50: 1523–1544
Farhat C., Mandel J. and Roux F.-X. (1994). Optimal convergence properties of the FETI domain decomposition method. Comput Meth Appl Mech Engng 115: 365–385
Farhat C. and Roux F.-X. (1991). A method of finite element tearing and interconnecting and its parallel solution algorithm. Int J Numer Meth Engng 32: 1205–1227
Farhat C. and Roux F.-X. (1992). An unconventional domain decomposition method for an efficient parallel solution of large-scale finite element systems. SIAM J Sci Comput 13: 379–396
Gray, L. J.: Evaluation of singular and hypersingular Galerkin integrals: direct limits and symbolic computation. In: (Sladek, V., Sladek, J., eds.) Singular integrals in the boundary element method: advances in boundary elements. Comput Mech Publ, chap. 2 (1998)
Hackbusch W. (1985). Multigrid methods and applications. Springer, Berlin
Hlaváček I., Haslinger J., Nečas J. and Lovíšek J. (1988). Solution of variational inequalities in mechanics. Springer, Berlin
Kornhuber R. (1997). Adaptive monotone multigrid methods for nonlinear variational problems. Teubner, Stuttgart
Kornhuber R. and Krause R. (2001). Adaptive multigrid methods for Signorini’s problem in linear elasticity. Comput Vis Sci 4: 9–20
Langer U. and Steinbach O. (2003). Boundary element tearing and interconnecting methods. Computing 71: 205–228
Mandel J. (1984). Étude algébrique d’une méthode multigrille pour quelques problèmes de frontière libre. C R Acad Sci Ser I 298: 469–472 (in French)
Of, G.: BETI – Gebietszerlegungsmethoden mit schnellen Randelementverfahren und Anwendungen. Ph.D. Thesis, University of Stuttgart (2006) (in German)
Of G., Steinbach O. and Wendland W.L. (2006). The fast multipole method for the symmetric boundary integral formulation. IMA J Numer Anal 26: 272–296
Rjasanow, S., Steinbach, O.: The fast solution of boundary integral equations. Mathematical and analytical techniques with applications to engineering. Springer, New York (2007)
Sadowská, M.: Solution of variational inequalities by the boundary integral equations. M.Sc. Thesis, VŠB-Technical University of Ostrava (2005) (in Czech)
Spann W. (1993). On the boundary element method for the Signorini problem of the Laplacian. Numer Math 65: 337–356
Steinbach O. (1999). Fast evaluation of Newton potentials in boundary element methods. East West J Numer Math 7: 211–222
Steinbach, O.: Stability estimates for hybrid coupled domain decomposition methods. Lecture Notes in Mathematics, vol. 1809. Springer, Berlin (2003)
Toselli A. and Widlund O.B. (2005). Domain decomposition methods-algorithms and theory. Springer, Berlin
Wohlmuth B.I. and Krause R. (2003). Monotone methods on nonmatching grids for nonlinear contact problems. SIAM J Sci Comput 25: 324–347
Wohlmuth B.I. (2001). Discretization methods and iterative solvers based on domain decomposition. Springer, Heidelberg
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Bouchala, J., Dostál, Z. & Sadowská, M. Theoretically supported scalable BETI method for variational inequalities. Computing 82, 53–75 (2008). https://doi.org/10.1007/s00607-008-0257-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00607-008-0257-3