Implicitization of Parametric Curves via Lagrange Interpolation | Computing Skip to main content
Log in

Implicitization of Parametric Curves via Lagrange Interpolation

  • Published:
Computing Aims and scope Submit manuscript

Abstract

A simple algorithm for finding the implicit equation of a parametric plane curve given by its parametric equations is presented. The algorithm is based on an efficient computation of the Bézout resultant and Lagrange interpolation. One of main features of our approach is the fact that it considerably reduces the problem of computing intermediate expressions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • C. Alonso J. Gutiérrez T. Recio (1995) ArticleTitleAn implicitization algorithm with fewer variables Comput. Aided Geom. Design 12 251–258 Occurrence Handle1327552 Occurrence Handle10.1016/0167-8396(95)91147-R Occurrence Handle0875.68835

    Article  MathSciNet  MATH  Google Scholar 

  • T. Becker V. Weispfenning (1993) Gröbner bases: a computational approach to commutative algebra Springer Berlin Heidelberg NewYork Occurrence Handle0772.13010

    MATH  Google Scholar 

  • Busé, L.: Residual resultant over the projective plane and the implicitization problem. In: Proc. 2001 Int. Symp. on Symbolic and Algebraic Computation, ISSAC'01. New York: ACM Press, pp. 48–55 (2001).

  • L. Busé D. Cox C. D'Andrea (2003) ArticleTitleImplicitization of surfaces in ℙ 3 in the presence of base points J. Algebra Appl. 2 IssueID2 189–214 Occurrence Handle1980408 Occurrence Handle10.1142/S0219498803000489 Occurrence Handle1068.14066

    Article  MathSciNet  MATH  Google Scholar 

  • F. Chen J. Zheng T. W. Sederberg (2001) ArticleTitleThe μ-basis of a rational ruled surface Comput. Aided Geom. Design 18 61–72 Occurrence Handle1807798 Occurrence Handle10.1016/S0167-8396(01)00012-7 Occurrence Handle0972.68158

    Article  MathSciNet  MATH  Google Scholar 

  • E. W. Chionh R. N. Goldman (1992) Implicitizing rational surfaces with base points by applying perturbations and the factors of zero theorem L. Lyche L. Schumaker (Eds) Mathematical methods in computer aided geometric design II Academic Press London 101–110

    Google Scholar 

  • Corless, R. M., Giesbrecht, M. W., Kotsireas, I. S., Watt, S. M.: Numerical implicitization of parametric hypersurfaces with linear algebra. In: AISC'2000 Proc. (Madrid), pp. 174–183 (2000).

  • D. Cox J. Little D. O'shea (1998) Using algebraic geometry Springer Berlin Occurrence Handle0920.13026

    MATH  Google Scholar 

  • D. Cox R. Goldman M. Zhang (2000) ArticleTitleOn the validity of implicitization by moving quadrics for rational surfaces with no base points J. Symb. Comput. 29 IssueID3 419–440 Occurrence Handle1751389 Occurrence Handle10.1006/jsco.1999.0325 Occurrence Handle0959.68124

    Article  MathSciNet  MATH  Google Scholar 

  • D. Cox (2001) ArticleTitleEquations of parametric curves and surfaces via syzygies. In: Symbolic computation: solving equations in algebra, geometry, and engineering Contemp. Math. 286 1–20 Occurrence Handle1009.68174

    MATH  Google Scholar 

  • D. Cox (2003) ArticleTitleCurves surfaces, and syzygies. In: Topics in algebraic geometry and geometric modeling Contemp. Math. 334 131–149 Occurrence Handle1058.14072

    MATH  Google Scholar 

  • G. Farin (1996) Curves and surfaces for computer aided geometric design EditionNumber4 Academic Press Boston

    Google Scholar 

  • X. S. Gao S. C. Chou (1992) ArticleTitleImplicitization of rational parametric equations J. Symb. Comput. 14 459–470 Occurrence Handle1197714 Occurrence Handle10.1016/0747-7171(92)90017-X Occurrence Handle0782.14047

    Article  MathSciNet  MATH  Google Scholar 

  • Gelfand, I. M., Kapranov, M. M., Zelevinsky, A. V.: Discriminants, resultants and muli-dimensional determinants. Birkhäuser 1994.

  • Hoffmann, C. M.: Algebraic and numerical techniques for offsets and blends. In: Computation of curves and surfaces (Dahmen, W., Gasca, M., Micchelli, C. A., eds.). NATO ASI Series C: Mathematical and Physical Sciences, vol. 307. Dordrecht: Kluwer Academic, pp. 499–528 (1990).

  • J. Hoschek D. Lasser (1993) Fundamentals of computer aided geometric design A.K. Peters Wellesley Occurrence Handle0788.68002

    MATH  Google Scholar 

  • Kapur, D., Saxena, T.: Comparison of various multivariate resultant formulations. In: Proc. of Int. Symp. on Symbolic and Algebraic Computation (ISSAC'95), pp. 87–194. Academic Press 1995.

  • Li, Z. M.: Automatic implicitization of parametric objects. MM Research Preprints. Academia Sinica 4. Inst. of Systems Science 1989.

  • A. Marco J. J. Martínez (2001) ArticleTitleUsing polynomial interpolation for implicitizing algebraic curves Comput. Aided Geom. Design 18 309–319 Occurrence Handle1834677 Occurrence Handle10.1016/S0167-8396(01)00033-4 Occurrence Handle0971.68178

    Article  MathSciNet  MATH  Google Scholar 

  • A. Marco J. J. Martínez (2002) ArticleTitleImplicitization of rational surfaces by means of polynomial interpolation Comput. Aided Geom. Design. 19 IssueID5 327–344 Occurrence Handle1907770 Occurrence Handle10.1016/S0167-8396(02)00094-8 Occurrence Handle0995.68140

    Article  MathSciNet  MATH  Google Scholar 

  • T. W. Sederberg (1986) ArticleTitleImproperly parametrized rational curves Comput. Aided Geom. Design 3 67–75 Occurrence Handle0594.65006 Occurrence Handle10.1016/0167-8396(86)90025-7

    Article  MATH  Google Scholar 

  • Sederberg, T. W., Chen, F.: Implicitization using moving curves and surfaces. In: Proc. 22nd Ann. Conf. Comput. Graph. Interact. Tech., SIGGRAPH'95. New York: ACM Press, pp. 301–308 (1995).

  • Sendra, J. R., Winkler, F.: A symbolic algorithm for the parametrization of algebraic plane curves. Technical Report RISC 89-41.1, Research Inst. Symb. Comp. Univ. Linz (1989).

  • J. R. Sendra F. Winkler (1991) ArticleTitleSymbolic parametrization of curves J. Symb. Comput. 12 607–631 Occurrence Handle1141543 Occurrence Handle10.1016/S0747-7171(08)80144-7 Occurrence Handle0759.14044

    Article  MathSciNet  MATH  Google Scholar 

  • Shi H., Sun Y. L.: Blending of triangular algebraic surfaces. MM-Res. Preprints No. 21, pp. 200–206 (2002).

  • Shi H., Sun Y. L.: On blending of cylinders. MM-Res. Preprints No. 21, pp. 207–211 (2002).

  • Sturmfels, B.: Introduction to resultants. In: Applications of computational geometry (Cox, D., Sturmfels, B., eds.). Proc. of Symp. in Applied Mathematics 53, pp. 25–39. American Mathematical Society 1998.

  • W. T. Wu (2000) Mathematics mechanization Science Press and Kluwer Academic Beijing and Dordrecht

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongli Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, Y., Yu, J. Implicitization of Parametric Curves via Lagrange Interpolation. Computing 77, 379–386 (2006). https://doi.org/10.1007/s00607-006-0163-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00607-006-0163-5

AMS Subject Classifications

Keywords

Navigation