Biological property-based artificial scar synthesis using inverse lighting | Multimedia Systems Skip to main content
Log in

Biological property-based artificial scar synthesis using inverse lighting

  • Regular Paper
  • Published:
Multimedia Systems Aims and scope Submit manuscript

Abstract

The present study proposes a method to extract and apply biological properties to naturally realize a scar texture on the skin. The ratio of melanin to hemoglobin in the skin, which determines inter- and intra-individual variations in skin appearance, is extracted as a biological property. First, a color table is defined using parameterized biological properties. Using an inverse-lighting equation that we define, biological parameters and rendering parameters are extracted from a single obtained or downloaded scar image without taking a picture of a scar directly. The extracted parameters are used to realize the most appropriate scar on the actual skin. To express the geometric depth of the scar, a tessellation process is employed. Finally, we provide the experimental results from the evaluation of our method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Jimenez, J., Whelan, D., Sundstedt, V., Gutierrez, D.: Real-time realistic skin translucency. IEEE Comput. Graph. Appl. 30, 32–41 (2010)

    Article  Google Scholar 

  2. Li, D., Sun, X., Ren, Z., Lin, S., Tong, Y., Guo, B., Zhou, K.: TransCut: interactive rendering of translucent cutouts. IEEE Trans. Vis. Comput. Graph. 19, 484–494 (2013)

    Article  Google Scholar 

  3. d’Eon, E., Francois, G., Hill, M., Letteri, J., Aubry, J., Digital, W.: An energy-conserving hair reflectance model. Eurographics Symp. Rend. 30, 1181–1187 (2011)

    Google Scholar 

  4. Moon, J.T., Marschner, S.R.: Simulating multiple scattering in hair using a photon mapping approach. ACM Trans. Graph. 25, 1067–1074 (2006)

    Article  Google Scholar 

  5. Francois, G., Gautron, P., Breton, G., Bouatouch, K.: Image-based modeling of the human eye. IEEE Trans. Vis. Comput. Graph. 15, 815–827 (2009)

    Article  Google Scholar 

  6. Schröder, K., Klein, R., Zinke, A.: A volumetric approach to predictive rendering of fabrics. Eurographics Symp. Rend. 30, 1277–1286 (2011)

    Google Scholar 

  7. Gauglitz, G.G., Korting, H.C., Pavicic, T., Ruzicka, T., Jeschke, M.G.: Hypertrophic scarring and keloids: pathomechanisms and current and emerging treatment strategies. Mol. Med. 17, 113–125 (2011)

    Article  Google Scholar 

  8. Kwan, P., Hori, K., Ding, J., Tredget, E.E.: Scar and contracture: biological principles. Hand Clin. 25, 511–528 (2009)

    Article  Google Scholar 

  9. Donner, C., Jensen, H.W.: A spectral BSSRDF for shading human skin. Eurographics Symp. Rend. 2006, 409–418 (2006)

    Google Scholar 

  10. Donner, C., Jensen, H.W.: Light diffusion in multi-layered translucent materials. ACM Trans. Graph. 24, 1032–1039 (2005)

    Article  Google Scholar 

  11. Tsumura, N., Ojima, N., Sato, K., Shiraishi, M., Shimizu, H., Nabeshima, H., Akazaki, S., Hori, K., Miyake, Y.: Image based skin color and texture analysis/synthesis by extracting hemoglobin and melanin information in the skin. ACM Trans. Graph. 22, 770–779 (2003)

    Article  Google Scholar 

  12. Ojima, N., Okiyama, N., Okaguchi, S., Tsumura, N., Nakaguchi, T., Hori, K., Miyake, Y.: Quantification method for the appearance of melanin pigmentation using independent component analysis. In: Proceedings of SPIE the International Society for Optical Engineering 5686 (2005)

  13. Muñoz, A., Echevarria, J.I., Seron, F.J., Lopez-Moreno, J., Glencross, M., Gutierrez, D.: BSSRDF estimation from single images. Comput. Graph. Forum 30, 455–464 (2011)

    Article  Google Scholar 

  14. Lee, C.Y., Lee, S., Chin, S.: Multi-layer structural wound synthesis on 3D face. Comput. Anim. Virtual Worlds 22, 177–185 (2011)

    Article  Google Scholar 

  15. Choi, T., Chin, S.: Novel real-time facial wound recovery synthesis using subsurface scattering. Sci. World J. 965036, 1–8 (2014)

    Google Scholar 

  16. Baranoski, G.V., Krishnaswamy, A.: Light and Skin Interactions: Simulations for Computer Graphics Applications. Morgan Kaufmann publishers Inc., San Francisco (2010)

    Google Scholar 

  17. Igarashi, T., Nishino, K., Nayar, S.K.: The appearance of human skin: a survey. Found. Trends Comput. Graph. Vis. 3, 1–95 (2007)

    Article  Google Scholar 

  18. Krishnaswamy, A., Baranoski, G.V.G.: A biophysically-based spectral model of light interaction with human skin. Comput. Graph. Forum 23, 331–340 (2004)

    Article  Google Scholar 

  19. Chen, T.F., Baranoski, G.V.G., Kimmel, B.W., Miranda, E.: Hyperspectral modeling of skin appearance. ACM Trans. Graph. 34, 31:1–31:14 (2015)

    Google Scholar 

  20. Iglesias, J.A., Aliaga, C., Jarabo, A., Gutierrez, D.: A biophysically-based model of the optical properties of skin aging. Comput. Graph. Forum 34(2), 45–55 (2015)

    Article  Google Scholar 

  21. Chen, T.F.: On the modelling of hyperspectral light and skin interactions and the simulation of skin appearance changes due to tanning. Ph.D. thesis. University of Waterloo, Canada, December (2015)

  22. Jimenez, J., Veronica, S., Diego, G.: Screen-space perceptual rendering of human skin. ACM Trans. Appl. Percept. 6(4), 23 (2009)

    Article  Google Scholar 

  23. Jimenez, J., Zsolnai, K., Jarabo, A., Freude, C., Auzinger, T., Wu, X.C., Pahlen, J.V.D., Wimmer, M., Gutierrez, D.: Separable subsurface scattering. Comput. Graph. Forum 34(6), 188–197 (2015)

    Article  Google Scholar 

  24. Jimenez, J., Scully, T., Barbosa, N., Donner, C., Alvarez, X., Vieira, T., Matts, P., Orvalho, V., Gutierrez, D., Weyrich, T.: A practical appearance model for dynamic facial color. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 29, 141:1–141:9 (2010)

    Google Scholar 

  25. Donner, C., Weyrich, T., d’Eon, E., Ramamoorthi, E., Rusinkiewicz, S.: A layered, heterogeneous reflectance model for acquiring and rendering human SKIN. ACM Trans. Graph. 27, 140:1–140:12 (2008)

    Article  Google Scholar 

  26. Ghosh, A., Hawkins, T., Peers, P., Frederiksen, S., Debevec, P.: Practical modeling and acquisition of layered facial reflectance. ACM Trans. Graph. 27, 139:1–139:10 (2008)

    Article  Google Scholar 

  27. Marschner, S.R., Greenber, D.P.: Inverse lighting for photography. In: Proceedings of IS&T/SID Firth Color Imaging Conference (1997)

  28. Yu, Y., Debevec, P., Malik, J., Hawkins, T.: Inverse global illumination: recovering reflectance models of real scenes from photographs. In: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques (1999)

  29. Tunwattanapong, B., Fyffe, G., Graham, P., Busch, J., Yu, X., Ghosh, A., Debevec, P.: Acquiring reflectance and shape from continuous spherical harmonic illumination. ACM Trans Graph 32, 109 (2013)

    Article  MATH  Google Scholar 

  30. Jacques, S.L.: Skin optics. Oregon Medical Laser Center News. http://omlc.ogi.edu/news/jan98/skinoptics.html (1998)

  31. Prahl, S.: Optical absorption of hemoglobin. Oregon Medical Laser Center. http://omlc.ogi.edu/spectra/hemoglobin/ (1999)

  32. Bashkatov, A.N., Genina, E.A., Kochubey, V.I., Tuchin, V.V.: Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm. J. Phys. D Appl. Phys. 38, 2543–2555 (2005)

    Article  Google Scholar 

  33. Walter, B.: Notes on the Ward BRDF. Cornell Program of Computer Graphics Technical Report. PCG-05-06 (2005)

  34. Gotanda, Y.: Beyond a simple physically based Blinn–Phong model in real-time. SIGGRAPH 2012 course (2012)

  35. Lagarias, J.C., Reeds, J.A., Wright, M.H., Wright, P.E.: Convergence properties of the Nelder–Mead simplex method in low dimensions. SIAM J. Optim. 1, 112–147 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  36. Boubekeur, T., Alexa, M.: Phong tessellation. ACM Trans Graph. 27, 141:1–141:5 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

This research was partially supported by the Korea Research Foundation Grant funded (NRF-2010:2014-0008673).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seongah Chin.

Additional information

Communicated by B. Huet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, T., Ghan, S. & Chin, S. Biological property-based artificial scar synthesis using inverse lighting. Multimedia Systems 24, 407–418 (2018). https://doi.org/10.1007/s00530-017-0564-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00530-017-0564-7

Keywords

Navigation