Abstract
The present study proposes a method to extract and apply biological properties to naturally realize a scar texture on the skin. The ratio of melanin to hemoglobin in the skin, which determines inter- and intra-individual variations in skin appearance, is extracted as a biological property. First, a color table is defined using parameterized biological properties. Using an inverse-lighting equation that we define, biological parameters and rendering parameters are extracted from a single obtained or downloaded scar image without taking a picture of a scar directly. The extracted parameters are used to realize the most appropriate scar on the actual skin. To express the geometric depth of the scar, a tessellation process is employed. Finally, we provide the experimental results from the evaluation of our method.
Similar content being viewed by others
References
Jimenez, J., Whelan, D., Sundstedt, V., Gutierrez, D.: Real-time realistic skin translucency. IEEE Comput. Graph. Appl. 30, 32–41 (2010)
Li, D., Sun, X., Ren, Z., Lin, S., Tong, Y., Guo, B., Zhou, K.: TransCut: interactive rendering of translucent cutouts. IEEE Trans. Vis. Comput. Graph. 19, 484–494 (2013)
d’Eon, E., Francois, G., Hill, M., Letteri, J., Aubry, J., Digital, W.: An energy-conserving hair reflectance model. Eurographics Symp. Rend. 30, 1181–1187 (2011)
Moon, J.T., Marschner, S.R.: Simulating multiple scattering in hair using a photon mapping approach. ACM Trans. Graph. 25, 1067–1074 (2006)
Francois, G., Gautron, P., Breton, G., Bouatouch, K.: Image-based modeling of the human eye. IEEE Trans. Vis. Comput. Graph. 15, 815–827 (2009)
Schröder, K., Klein, R., Zinke, A.: A volumetric approach to predictive rendering of fabrics. Eurographics Symp. Rend. 30, 1277–1286 (2011)
Gauglitz, G.G., Korting, H.C., Pavicic, T., Ruzicka, T., Jeschke, M.G.: Hypertrophic scarring and keloids: pathomechanisms and current and emerging treatment strategies. Mol. Med. 17, 113–125 (2011)
Kwan, P., Hori, K., Ding, J., Tredget, E.E.: Scar and contracture: biological principles. Hand Clin. 25, 511–528 (2009)
Donner, C., Jensen, H.W.: A spectral BSSRDF for shading human skin. Eurographics Symp. Rend. 2006, 409–418 (2006)
Donner, C., Jensen, H.W.: Light diffusion in multi-layered translucent materials. ACM Trans. Graph. 24, 1032–1039 (2005)
Tsumura, N., Ojima, N., Sato, K., Shiraishi, M., Shimizu, H., Nabeshima, H., Akazaki, S., Hori, K., Miyake, Y.: Image based skin color and texture analysis/synthesis by extracting hemoglobin and melanin information in the skin. ACM Trans. Graph. 22, 770–779 (2003)
Ojima, N., Okiyama, N., Okaguchi, S., Tsumura, N., Nakaguchi, T., Hori, K., Miyake, Y.: Quantification method for the appearance of melanin pigmentation using independent component analysis. In: Proceedings of SPIE the International Society for Optical Engineering 5686 (2005)
Muñoz, A., Echevarria, J.I., Seron, F.J., Lopez-Moreno, J., Glencross, M., Gutierrez, D.: BSSRDF estimation from single images. Comput. Graph. Forum 30, 455–464 (2011)
Lee, C.Y., Lee, S., Chin, S.: Multi-layer structural wound synthesis on 3D face. Comput. Anim. Virtual Worlds 22, 177–185 (2011)
Choi, T., Chin, S.: Novel real-time facial wound recovery synthesis using subsurface scattering. Sci. World J. 965036, 1–8 (2014)
Baranoski, G.V., Krishnaswamy, A.: Light and Skin Interactions: Simulations for Computer Graphics Applications. Morgan Kaufmann publishers Inc., San Francisco (2010)
Igarashi, T., Nishino, K., Nayar, S.K.: The appearance of human skin: a survey. Found. Trends Comput. Graph. Vis. 3, 1–95 (2007)
Krishnaswamy, A., Baranoski, G.V.G.: A biophysically-based spectral model of light interaction with human skin. Comput. Graph. Forum 23, 331–340 (2004)
Chen, T.F., Baranoski, G.V.G., Kimmel, B.W., Miranda, E.: Hyperspectral modeling of skin appearance. ACM Trans. Graph. 34, 31:1–31:14 (2015)
Iglesias, J.A., Aliaga, C., Jarabo, A., Gutierrez, D.: A biophysically-based model of the optical properties of skin aging. Comput. Graph. Forum 34(2), 45–55 (2015)
Chen, T.F.: On the modelling of hyperspectral light and skin interactions and the simulation of skin appearance changes due to tanning. Ph.D. thesis. University of Waterloo, Canada, December (2015)
Jimenez, J., Veronica, S., Diego, G.: Screen-space perceptual rendering of human skin. ACM Trans. Appl. Percept. 6(4), 23 (2009)
Jimenez, J., Zsolnai, K., Jarabo, A., Freude, C., Auzinger, T., Wu, X.C., Pahlen, J.V.D., Wimmer, M., Gutierrez, D.: Separable subsurface scattering. Comput. Graph. Forum 34(6), 188–197 (2015)
Jimenez, J., Scully, T., Barbosa, N., Donner, C., Alvarez, X., Vieira, T., Matts, P., Orvalho, V., Gutierrez, D., Weyrich, T.: A practical appearance model for dynamic facial color. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 29, 141:1–141:9 (2010)
Donner, C., Weyrich, T., d’Eon, E., Ramamoorthi, E., Rusinkiewicz, S.: A layered, heterogeneous reflectance model for acquiring and rendering human SKIN. ACM Trans. Graph. 27, 140:1–140:12 (2008)
Ghosh, A., Hawkins, T., Peers, P., Frederiksen, S., Debevec, P.: Practical modeling and acquisition of layered facial reflectance. ACM Trans. Graph. 27, 139:1–139:10 (2008)
Marschner, S.R., Greenber, D.P.: Inverse lighting for photography. In: Proceedings of IS&T/SID Firth Color Imaging Conference (1997)
Yu, Y., Debevec, P., Malik, J., Hawkins, T.: Inverse global illumination: recovering reflectance models of real scenes from photographs. In: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques (1999)
Tunwattanapong, B., Fyffe, G., Graham, P., Busch, J., Yu, X., Ghosh, A., Debevec, P.: Acquiring reflectance and shape from continuous spherical harmonic illumination. ACM Trans Graph 32, 109 (2013)
Jacques, S.L.: Skin optics. Oregon Medical Laser Center News. http://omlc.ogi.edu/news/jan98/skinoptics.html (1998)
Prahl, S.: Optical absorption of hemoglobin. Oregon Medical Laser Center. http://omlc.ogi.edu/spectra/hemoglobin/ (1999)
Bashkatov, A.N., Genina, E.A., Kochubey, V.I., Tuchin, V.V.: Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm. J. Phys. D Appl. Phys. 38, 2543–2555 (2005)
Walter, B.: Notes on the Ward BRDF. Cornell Program of Computer Graphics Technical Report. PCG-05-06 (2005)
Gotanda, Y.: Beyond a simple physically based Blinn–Phong model in real-time. SIGGRAPH 2012 course (2012)
Lagarias, J.C., Reeds, J.A., Wright, M.H., Wright, P.E.: Convergence properties of the Nelder–Mead simplex method in low dimensions. SIAM J. Optim. 1, 112–147 (1998)
Boubekeur, T., Alexa, M.: Phong tessellation. ACM Trans Graph. 27, 141:1–141:5 (2008)
Acknowledgements
This research was partially supported by the Korea Research Foundation Grant funded (NRF-2010:2014-0008673).
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by B. Huet.
Rights and permissions
About this article
Cite this article
Choi, T., Ghan, S. & Chin, S. Biological property-based artificial scar synthesis using inverse lighting. Multimedia Systems 24, 407–418 (2018). https://doi.org/10.1007/s00530-017-0564-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00530-017-0564-7