Finite-time synchronization of hierarchical hybrid coupled neural networks with mismatched quantization | Neural Computing and Applications Skip to main content

Advertisement

Log in

Finite-time synchronization of hierarchical hybrid coupled neural networks with mismatched quantization

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

A non-fragile memory feedback control methodology is precisely proposed in this study for synchronization of hierarchical hybrid coupled neural networks (HHCNNs) over finite-time domain with mismatched quantization channels and external disturbances. Specifically, the considered network model incorporates both higher level deterministic switching and lower level Markov switching. Moreover, an undirected communication topology is selected to project the addressed HHCNNs. The foremost intention of this study is to substantiate the synchronization criterion over finite interval of time with proposed \(H_{\infty }\) disturbance attenuation. In consideration to this motive, by conferring Lyapunov stability theory in conjunction with average dwell-time technique, a collection of adequate conditions is established for assuring the exponential synchronization criterion through a set of linear matrix inequalities. Moreover, the desired the memory feedback controller with gain variations is computed based on the developed matrix inequalities. Finally, the developed theoretical results are validated through a numerical example, which showcases the significance and advantage of the developed control strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Chen J, Park JH, Xu S (2019) Stability analysis for neural networks with time-varying delay via improved techniques. IEEE Trans Cybern 49(12):4495–4500

    Article  Google Scholar 

  2. Chen C, Li L, Peng H, Kurths J, Yang Y (2018) Fixed-time synchronization of hybrid coupled networks with time-varying delays. Chaos Solitons Fractals 108:49–56

    Article  MathSciNet  Google Scholar 

  3. Zhang L, Zhu Y, Zheng WX (2016) Synchronization and state estimation of a class of hierarchical hybrid neural networks with time-varying delays. IEEE Trans Neural Netw Learn Syst 27(2):459–470

    Article  MathSciNet  Google Scholar 

  4. Chen S, Jiang H, Lu B, Yu Z (2020) Exponential synchronization for inertial coupled neural networks under directed topology via pinning impulsive control. J Franklin Inst 357(3):1671–1689

    Article  MathSciNet  Google Scholar 

  5. Wang J, Zhang H, Wang Z, Gao DW (2017) Finite-time synchronization of coupled hierarchical hybrid neural networks with time-varying delays. IEEE Trans Cybern 47(10):2995–3004

    Article  Google Scholar 

  6. Cui Y, Liu Y, Zhang W, Alsaadi FE (2018) Stochastic stability for a class of discrete-time switched neural networks with stochastic noise and time-varying mixed delays. Int J Control Autom Syst 16(1):158–167

    Article  Google Scholar 

  7. Hu X, Xia J, Wei Y, Meng B, Shen H (2019) Passivity-based state synchronization for semi-Markov jump coupled chaotic neural networks with randomly occurring time delays. Appl Math Comput 361:32–41

    Article  MathSciNet  Google Scholar 

  8. Xiao J, Zeng Z (2020) Finite-time passivity of neural networks with time varying delay. J Franklin Inst 357:2437–2456

    Article  MathSciNet  Google Scholar 

  9. Tian Y, Wang Z (2021) A new result on \(H_\infty \) performance state estimation for static neural networks with time-varying delays. Appl Math Comput 388:125556

    Article  MathSciNet  Google Scholar 

  10. Zhang Z, Cao J (2019) Novel finite-time synchronization criteria for inertial neural networks with time delays via integral inequality method. IEEE Trans Neural Netw Learn Syst 30(5):1476–1485

    Article  MathSciNet  Google Scholar 

  11. Zhang Z, Ren L (2019) New sufficient conditions on global asymptotic synchronization of inertial delayed neural networks by using integrating inequality techniques. Nonlinear Dyn 95(2):905–917

    Article  MathSciNet  Google Scholar 

  12. Liu Y, Park JH, Guo BZ, Fang F, Zhou F (2018) Event-triggered dissipative synchronization for Markovian jump neural networks with general transition probabilities. Int J Robust Nonlinear Control 28(13):3893–3908

    Article  Google Scholar 

  13. Han Y, Lian J (2019) Synchronization of switched neural networks with time-varying delays via sampled-data control. Asian J Control 21(3):1260–1269

    Article  MathSciNet  Google Scholar 

  14. Li S, Peng X, Tang Y, Shi Y (2018) Finite-time synchronization of time-delayed neural networks with unknown parameters via adaptive control. Neurocomputing 308:65–74

    Article  Google Scholar 

  15. Ding K, Zhu Q, Liu L (2019) Extended dissipativity stabilization and synchronization of uncertain stochastic reaction-diffusion neural networks via intermittent non-fragile control. J Franklin Inst 356(18):11690–11715

    Article  MathSciNet  Google Scholar 

  16. Zhao J, Wang J, Park JH, Shen H (2015) Memory feedback controller design for stochastic Markov jump distributed delay systems with input saturation and partially known transition rates. Nonlinear Anal Hybrid Syst 15:52–62

    Article  MathSciNet  Google Scholar 

  17. Chen Y, Wang Z, Qian W, Alsaadi FE (2017) Memory-based controller design for neutral time-delay systems with input saturations: a novel delay-dependent polytopic approach. J Franklin Inst 354(13):5245–5265

    Article  MathSciNet  Google Scholar 

  18. Karthick SA, Sakthivel R, Alzahrani F, Leelamani A (2019) Synchronization of semi-Markov coupled neural networks with impulse effects and leakage delay. Neurocomputing 386:221–231

    Article  Google Scholar 

  19. Sakthivel R, Joby M, Anthoni SM (2017) Resilient dissipative based controller for stochastic systems with randomly occurring gain fluctuations. Inf Sci 418–419:447–462

    Article  Google Scholar 

  20. Ji Liu, Zha L, Xie X, Tian E (2018) Resilient observer-based control for networked nonlinear T-S fuzzy systems with hybrid-triggered scheme. Nonlinear Dyn 91(3):2049–2061

    Article  Google Scholar 

  21. Liu D, Yang GH (2018) Event-triggered non-fragile control for linear systems with actuator saturation and disturbances. Inf Sci 429:1–11

    Article  MathSciNet  Google Scholar 

  22. Huo S, Chen M, Shen H (2017) Non-fragile mixed \(H_{\infty }\) and passive asynchronous state estimation for Markov jump neural networks with randomly occurring uncertainties and sensor nonlinearity. Neurocomputing 227:46–53

    Article  Google Scholar 

  23. Luo J, Tian W, Zhong S, Shi K, Wang W (2018) Non-fragile asynchronous event-triggered control for uncertain delayed switched neural networks. Nonlinear Anal Hybrid Syst 29:54–73

    Article  MathSciNet  Google Scholar 

  24. Shi K, Zhong S, Tang Y, Cheng J (2020) Non-fragile memory filtering of TS fuzzy delayed neural networks based on switched fuzzy sampled-data control. Fuzzy Sets Syst 394:40–64

    Article  MathSciNet  Google Scholar 

  25. Yang X, Feng Y, Yiu KFC, Song Q, Alsaadi FE (2018) Synchronization of coupled neural networks with infinite-time distributed delays via quantized intermittent pinning control. Nonlinear Dyn 94(3):2289–2303

    Article  Google Scholar 

  26. Wan Y, Cao J, Wen G (2017) Quantized synchronization of chaotic neural networks with scheduled output feedback control. IEEE Trans Neural Netw Learn Syst 28(11):2638–2647

    Article  MathSciNet  Google Scholar 

  27. Shen M, Nguang SK, Ahn CK, Wang QG (2019) Robust \(H_2\) control of linear systems with mismatched quantization. IEEE Trans Autom Control 64(4):1702–1709

    Article  Google Scholar 

  28. Qi W, Park JH, Zong G, Cao J, Cheng J (2020) Synchronization for quantized semi-Markov switching neural networks in a finite time. IEEE Trans Neural Netw Learn Syst 32(3):1264–1275

    Article  MathSciNet  Google Scholar 

  29. Jian J, Duan L (2020) Finite-time synchronization for fuzzy neutral-type inertial neural networks with time-varying coefficients and proportional delays. Fuzzy Sets Syst 381:51–67

    Article  MathSciNet  Google Scholar 

  30. Zhang D, Cheng J, Cao J, Zhang D (2019) Finite-time synchronization control for semi-Markov jump neural networks with mode-dependent stochastic parametric uncertainties. Appl Math Comput 344–345:230–242

    MathSciNet  MATH  Google Scholar 

  31. Liu C, Guo Y, Rao H, Lin M, Xu Y (2021) Finite-time synchronization for periodic T-S fuzzy master-slave neural networks with distributed delays. J Franklin Inst 358(4):2367–2381

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rathinasamy Sakthivel.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest concerning the publication of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix I

Appendix I

Taking advantage of infinitesimal operator [18] indicated here as \({\mathcal {L}}\) on (18), we attained the following equations:

$$\begin{aligned} {\mathcal {L}}V_1(\varPsi (t),p,q,t)&=2\varPsi ^{T}(t)P_{p,q}{\dot{\varPsi }}(t)\nonumber \\&\quad +\sum _{n=1}^{{\mathcal {M}}}\varPi _{qn}^{p}\varPsi ^{T}(t)P_{p,n}\varPsi (t), \end{aligned}$$
(28)
$$\begin{aligned} {\mathcal {L}}V_2(\varPsi (t),p,q,t)&\le \varPsi ^{T}(t)Q_{1,p,q}{\varPsi }(t)-(1-\delta _{p,q})e^{\alpha \tau _{p,q}^{1}} \nonumber \\&\quad \times \varPsi (t-\tau _{p,q}^{T}(t))Q_{1,p,q}{\varPsi }(t-\tau _{p,q}(t))\nonumber \\&\quad +\sum _{n=1}^{{\mathcal {M}}}\varPi _{qn}^{p}\int _{t-\tau _{p,q}(t)}^{t}e^{\alpha (t-s)}\varPsi ^{T}(s)\nonumber \\&\quad \times Q_{1,p,n}\varPsi (s){\mathrm {d}}s +\varPsi ^{T}(t)R_{1,p,q}{\varPsi }(t) \nonumber \\&\quad -e^{\alpha \tau _{p,q}^{1}}\varPsi ^{T}(t-\tau _{p,q}^{1})\nonumber \\&\quad \times R_{1,p,q}{\varPsi }(t-\tau _{p,q}^{1})+\sum _{n=1}^{{\mathcal {M}}}\varPi _{qn}^{p}\nonumber \\&\quad \times \int _{t-\tau _{p,q}^{1}}^{t}e^{\alpha (t-s)}\varPsi ^{T}(s)R_{1,p,n}\varPsi (s){\mathrm {d}}s\nonumber \\&\quad +e^{\alpha \tau _{p,q}^{1}}\varPsi (t-\tau _{p,q}^{1})^{T}S_{1,p,q}{\varPsi }(t-\tau _{p,q}^{1})\nonumber \\&\quad -e^{\alpha \tau _{p,q}^{2}}\varPsi ^{T}(t-\tau _{p,q}^{2})S_{1,p,q}{\varPsi }(t-\tau _{p,q}^{2}) \nonumber \\&\quad +\sum _{n=1}^{{\mathcal {M}}}\varPi _{qn}^{p}\int _{t-\tau _{p,q}^{2}}^{t-\tau _{p,q}^{1}}e^{\alpha (t-s)}\varPsi ^{T}(s)S_{1,p,n}\nonumber \\&\quad \times \varPsi (s){\mathrm {d}}s+\alpha V_2(\varPsi (t),p,q,t), \end{aligned}$$
(29)
$$\begin{aligned} {\mathcal {L}}V_3(\varPsi (t),p,q,t)&=\varPsi ^{T}(t) [\tau ^2_p Q+\tau ^2_p R+(\tau ^2_p-\tau ^1_p) S] \varPsi (t)\nonumber \\&\quad -\int _{t-\tau ^2_p}^{t}e^{\alpha (t-s)}\psi ^{T}(s) Q \psi (s) {\mathrm {d}}s \nonumber \\&\quad -\int _{t-\tau ^2_p}^{t}e^{\alpha (t-s)}\psi ^{T}(s) R \psi (s) {\mathrm {d}}s \nonumber \\&\quad -\int _{t-\tau ^2_p}^{t-\tau ^1_p}e^{\alpha (t-s)}\psi ^{T}(s) S \psi (s){\mathrm {d}}s \nonumber \\&\quad +\alpha V_3(\varPsi (t),p,q,t), \end{aligned}$$
(30)
$$\begin{aligned} {\mathcal {L}}V_4(\varPsi (t),p,q,t)&={(\tau _{p,q}^{1})}^{2}{\dot{\varPsi }}^{T}(t)E_1{\dot{\varPsi }}(t) \nonumber \\&\quad +{(\tau _{p,q}^{2})}^{2}{\dot{\varPsi }}^{T}(t)E_2{\dot{\varPsi }}(t)\nonumber \\&\quad -\tau _{p,q}^{1}\int _{t-\tau _{p,q}^{1}}^{t}e^{\alpha (t-s)}{\dot{\varPsi }}^{T}(S)E_1{\dot{\varPsi }}(S){\mathrm {d}}s \nonumber \\&\quad -\tau _{p,q}^{2}\int _{t-\tau _{p,q}^{2}}^{t} e^{\alpha (t-s)}{\dot{\varPsi }}^{T}(S)E_2{\dot{\varPsi }}(S){\mathrm {d}}s\nonumber \\&\quad +\alpha V_4(\varPsi (t),p,q,t). \end{aligned}$$
(31)

Now, by the agency of Jensen’s inequality [16], the integral terms in (31) can be simplified as follows:

$$\begin{aligned}&-\tau ^{1}_{p,q}\int _{t-\tau _{p,q}^{1}}^{t}e^{\alpha (t-s)}{\dot{\varPsi }}^{T}(S)E_1{\dot{\varPsi }}(S){\mathrm {d}}s \nonumber \\&\quad \le -e^{\alpha \tau _{p,q}^{1}}\left[ \int _{t-\tau _{p,q}^{1}}^{t}{\dot{\varPsi }}^{T}(S)\right] E_1 \left[ \int _{t-\tau _{p,q}^{1}}^{t}{\dot{\varPsi }}(S)\right] \nonumber \\&\quad \le -e^{\alpha \tau _{p,q}^{1}}\left[ \varPsi (t)-\varPsi (t-\tau ^1_{p,q})\right] ^\mathrm{T} E_1 \left[ \varPsi (t)-\varPsi (t-\tau ^1_{p,q})\right] , \end{aligned}$$
(32)
$$\begin{aligned}&-\tau ^{2}_{p,q}\int _{t-\tau _{p,q}^{2}}^{t}e^{\alpha (t-s)}{\dot{\varPsi }}^{T}(S)E_2{\dot{\varPsi }}(S){\mathrm {d}}s\nonumber \\&\quad \le -e^{\alpha \tau _{p,q}^{2}}\left[ \int _{t-\tau _{p,q}^{2}}^{t}{\dot{\varPsi }}^{T}(S)\right] E_2 \left[ \int _{t-\tau _{p,q}^{2}}^{t}{\dot{\varPsi }}(S)\right] \nonumber \\&\quad \le -e^{\alpha \tau _{p,q}^{2}}\left[ \varPsi (t)-\varPsi (t-\tau ^2_{p,q})\right] ^\mathrm{T} E_2 \left[ \varPsi (t)-\varPsi (t-\tau ^2_{p,q})\right] . \end{aligned}$$
(33)

According to \(\pi _{qn}\ge 0 (q\ne n),\ Q_{n}\ge 0\) and (13), we have

$$\begin{aligned}&\sum _{n=1}^{{\mathcal {M}}}\pi _{qn}^{p}\int _{t-\tau _{p,q}(t)}^{t}e^{\alpha (t-s)}\varPsi ^{T}(s)Q_{1,p,n}\varPsi (s){\mathrm {d}}s \nonumber \\&\quad \le \sum _{n=1,n\ne q}^{{\mathcal {M}}}\pi _{qn}^{p}\int _{t-\tau _{p,q}(t)}^{t}e^{\alpha (t-s)}\varPsi ^{T}(s)Q_{1,p,n}\varPsi (s){\mathrm {d}}s \nonumber \\&\quad \le \sum _{n=1,n\ne q}^{{\mathcal {M}}}\pi _{qn}^{p}\int _{t-\tau ^{2}_{p}}^{t}e^{\alpha (t-s)}\varPsi ^{T}(s)Q_{1,p,n}\varPsi (s){\mathrm {d}}s \nonumber \\&\quad \le \int _{t-\tau ^{2}_{p}}^{t}e^{\alpha (t-s)}\varPsi ^{T}(s)Q\varPsi (s){\mathrm {d}}s. \end{aligned}$$
(34)

Following the same methodology as above, we can get

$$\begin{aligned}&\sum _{n=1}^{{\mathcal {M}}}\pi _{qn}^{p}\int _{t-\tau ^{1}_{p,q}}^{t}e^{\alpha (t-s)}\varPsi ^{T}(s)R_{1,p,n}\varPsi (s){\mathrm {d}}s \nonumber \\&\quad \le \int _{t-\tau ^{2}_{p}}^{t}e^{\alpha (t-s)}\varPsi ^{T}(s)R\varPsi (s){\mathrm {d}}s, \end{aligned}$$
(35)
$$\begin{aligned}&\sum _{n=1}^{{\mathcal {M}}}\pi _{qn}^{p}\int _{t-\tau ^{2}_{p,q}}^{t-\tau ^{1}_{p,q}}e^{\alpha (t-s)}\varPsi ^{T}(s)S_{1,p,n}\varPsi (s){\mathrm {d}}s \nonumber \\&\quad \le \int _{t-\tau ^{2}_{p}}^{t-\tau ^{1}_{p}}e^{\alpha (t-s)}\varPsi ^{T}(s)S\varPsi (s){\mathrm {d}}s. \end{aligned}$$
(36)

Moreover, by utilizing Assumption 1, we can retrieve the following inequalities:

$$\begin{aligned}&\varPsi ^{T}(t){\bar{L}}{\varSigma }_1{\bar{L}}\varPsi (t)-g^{T}(\varPsi (t)){\varSigma }_1g(\varPsi (t))\ge 0, \end{aligned}$$
(37)
$$\begin{aligned}&\varPsi ^{T}(t-\tau _{p,q}(t)){\bar{L}}{\varSigma }_{2,p,q}{\bar{L}}\varPsi (t-\tau _{p,q}(t)) \nonumber \\&-g^{T}(\varPsi (t-\tau _{p,q}(t))){\varSigma }_{2,p,q}g(\varPsi (t-\tau _{p,q}(t)))\ge 0, \end{aligned}$$
(38)

where \(\varSigma _1\) and \(\varSigma _{2,p,q}\) are formerly described in theorem statement.

At the same instant, for any non-singular pertinent matrix \(W_{p,q}\), the following equation holds:

$$\begin{aligned}&2\{\varPsi ^{T}(t)+{{\dot{\varPsi }}^{T}(t)} (I_{N} \otimes {\mathcal {W}}_{p,q}) [-{\bar{C}}_{p,q}\varPsi (t)+{\bar{A}}_{p,q}g(\varPsi (t))\nonumber \\&+{\bar{B}}_{p,q}g(\varPsi (t-\tau _{p,q}(t)))+{\bar{J}}_{p,q}+{\bar{H}}_{1,p,q}\psi (t)\nonumber \\&+{\bar{H}}_{2,p,q}\psi (t-\tau _{p,q}(t))+{\bar{D}}_{p,q}\hbar (t)K_{1,p,q}\varPsi {(t)}\nonumber \\&+{\bar{D}}_{p,q}\hbar (t)K_{2,p,q}\varPsi {(t-\tau ^{1}_{p})} +{\bar{D}}_{p,q}\hbar (t)K_{3,p,q}\varPsi {(t-\tau ^{2}_{p})}\nonumber \\&+{\bar{D}}_{p,q}\hbar (t)e_{\mu _c}(t)-{\bar{D}}_{p,q}\hbar (t) \{\phi /2+ \varepsilon _w/\lambda \}\nonumber \\&\times sign\{{\bar{D}}_{p,q}^{T}P_{p.q}\varPsi {(t)}\}-\dot{\psi (t)}]\}=0, \end{aligned}$$
(39)

Further, from (28)-(39) with addition of \(z^{T}(s)z(s)-\gamma ^2 w^{T}(s)w(s)\) and taking mathematical expectations, we can easily fetch that

$$\begin{aligned}&{\mathbb {E}}\{{\mathcal {L}}V(\varPsi (t),p,q,t)\}- w^{T}(s)\alpha w(s)\le \ {\mathbb {E}}\big \{\varTheta ^{T}(t,p,q) \nonumber \\&\times [\varXi _{(v,w)pq}]_{(8\times 8)}\varTheta (t,p,q)+\alpha V(\varPsi (t),p,q,t)\big \}. \end{aligned}$$
(40)

Moreover, from relations (12) and (40), it is easy to obtain

$$\begin{aligned} {\mathbb {E}}\{{\mathcal {L}}V(\varPsi (t),p,q,t)\}<{\mathbb {E}}\{\alpha V(\varPsi (t),p,q,t)\}, \end{aligned}$$
(41)

where \(\varTheta (t,p,q)=\bigg [\varPsi ^{T}(t) \ \ \varPsi ^{T}(t-\tau _{p,q}(t)) \ \ \varPsi ^{T}(t-\tau ^1_{p,q}(t)) \ \varPsi ^{T}(t-\tau ^2_{p,q}(t)) \ \ g^{T}(\varPsi (t)) \ \ g^{T}(\varPsi (t-\tau _{p,q}))\ \ {\dot{\varPsi }}^{T}(t)\ \ w^{T}(s) \bigg ]^\mathrm{T}.\)

Further, multiplying \(e^{-\alpha t}\) and integrating (41), we get

$$\begin{aligned}&{\mathbb {E}}\{V(\varPsi (t),p,q,t)\}- w_z(1-e^{-\alpha z})\nonumber \\&< e^{-\alpha (t-t_k)}{\mathbb {E}}\{V(\varPsi (t),p,q,t)\}. \end{aligned}$$
(42)

Moreover, in light of (15)-(17) and (40), we acquire

$$\begin{aligned} {\mathbb {E}}\{V(\varPsi (t),p,q,t)\}&-w_z(1-e^{-\alpha z})\nonumber \\&< \kappa {\mathbb {E}}\{V(\varPsi (t),p,q,t)\}, t \in [t,t_k). \end{aligned}$$
(43)

Based on the relations (42) and (43), and setting the recursion from \(t_{k-1}\) to \(t_k\), \(t_{k-2}\) to \(t_{k-1}\), \(\ldots \) up to \(t_0\), we bring off inequality by

$$\begin{aligned} {\mathbb {E}}\{V(\varPsi (t),p,q,t)\}< \kappa ^{{V}_p}e^{\alpha {z}}\{V(0)+w_z(1-e^{-\alpha z})\} \end{aligned}$$
(44)

Then, by letting \({\tilde{P}}_{p,q}={\mathfrak {D}}_{p,q}^{-\frac{1}{2}}P_{p,q}{\mathfrak {D}}_{p,q}^{-\frac{1}{2}}, {\tilde{Q}}_{1,p,q}={\mathfrak {D}}_{p,q}^{-\frac{1}{2}}Q_{1,p,q}{\mathfrak {D}}_{p,q}^{-\frac{1}{2}},\quad {\tilde{R}}_{1,p,q}={\mathfrak {D}}_{p,q}^{-\frac{1}{2}}R_{1,p,q}{\mathfrak {D}}_{p,q}^{-\frac{1}{2}}, {\tilde{S}}_{1,p,q}={\mathfrak {D}}_{p,q}^{-\frac{1}{2}}S_{1,p,q}{\mathfrak {D}}_{p,q}^{-\frac{1}{2}},\quad {\tilde{Q}}={\mathfrak {D}}^{-\frac{1}{2}}Q{\mathfrak {D}}^{-\frac{1}{2}}, {\tilde{R}}={\mathfrak {D}}^{-\frac{1}{2}}R{\mathfrak {D}}^{-\frac{1}{2}},\quad {\tilde{S}}={\mathfrak {D}}^{-\frac{1}{2}}S{\mathfrak {D}}^{-\frac{1}{2}},\ \tilde{E_1}={\mathfrak {D}}^{-\frac{1}{2}}E_1{\mathfrak {D}}^{-\frac{1}{2}}, \tilde{E_2}={\mathfrak {D}}^{-\frac{1}{2}}E_2{\mathfrak {D}}^{-\frac{1}{2}}\) and it is easy to obtain

$$\begin{aligned} {\mathbb {E}}V(\psi (t),p,q,t)&\ge \varPsi ^{T}(t)P_{p,q}\varPsi (t) \nonumber \\&\ge \varUpsilon _{min}({\tilde{P}}_{p,q})\varPsi ^{T}(t){\mathfrak {D}}_{p,q}\varPsi (t) \nonumber \\&=\varUpsilon _1 \varPsi ^{T}(t){\mathfrak {D}}_{p,q}\varPsi (t). \end{aligned}$$
(45)

Furthermore from (18), it follows that

$$\begin{aligned} {\mathbb {E}}V(0)&={\mathbb {E}}\{(\varPsi ^{T}(0)P_{p,q}\varPsi (0)\nonumber \\&\quad +\int _{-\tau _{p}^2}^{0}e^{-\alpha s}\varPsi ^{T}(s)Q_{1,p,q}\varPsi (s){\mathrm {d}}s \nonumber \\&\quad +\int _{-\tau ^{1}_{p,q}}^{0}e^{-\alpha s}\varPsi ^{T}(s)R_{1,p,q}\varPsi (s){\mathrm {d}}s\nonumber \\&\quad +\int _{-\tau ^{2}_{p,q}}^{-\tau ^{1}_{p,q}}e^{-\alpha s}\varPsi ^{T}(s)S_{1,p,q}\varPsi (s){\mathrm {d}}s\nonumber \\&\quad +\int _{-\tau ^2_p}^{0} \int _{\theta }^{0}e^{-\alpha s}\varPsi ^{T}(s)Q\varPsi (s){\mathrm {d}}s{\mathrm {d}}\theta \nonumber \\&\quad +\int _{-\tau ^2_p}^{0}\int _{\theta }^{0}e^{-\alpha s}\varPsi ^{T}(s)R\varPsi (s){\mathrm {d}}s{\mathrm {d}}\theta \nonumber \\&\quad +\int _{-\tau ^2_p}^{-\tau ^1_p} \int _{\theta }^{0}e^{-\alpha s}\varPsi ^{T}(s)S\varPsi (s){\mathrm {d}}s{\mathrm {d}}\theta \nonumber \\&\quad +\tau ^1_{p,q}\int _{-\tau ^{1}_{p,q}}^{0}\int _{\theta }^{0}e^{-\alpha s}{\dot{\varPsi }}^{T}(s)E_1{\dot{\varPsi }}(s){\mathrm {d}}s{\mathrm {d}}\theta \nonumber \\&\quad +\tau ^2_{p,q}\int _{-\tau ^{2}_{p,q}}^{0}\int _{\theta }^{0}e^{-\alpha s}{\dot{\varPsi }}^{T}(s)E_2{\dot{\varPsi }}(s){\mathrm {d}}s{\mathrm {d}}\theta \}, \nonumber \\&\le \bigg [\varUpsilon _{max} (P_{p,q})+e^{\alpha \tau _{p}^{2}} \tau _{p}^{2} \varUpsilon _{max} (Q_{1,p,q})\nonumber \\&\quad +e^{\alpha \tau _{p}^{2}} \tau _{p}^{2} \varUpsilon _{max} (R_{1,p,q})\nonumber \\&\quad +e^{\alpha (\tau _{p,q}^{2}-\tau _{p,q}^{1})} (\tau _{p,q}^{1}-\tau _{p,q}^{2}) \nonumber \\&\quad \times \varUpsilon _{max} (S_{1,p,q})+e^{\alpha \tau _{p}^{2}}\frac{(\tau _{p}^{2})^{2}}{2}\varUpsilon _{max}(Q)\nonumber \\&\quad +e^{\alpha \tau _{p}^{2}}\frac{(\tau _{p}^{2})^{2}}{2}\varUpsilon _{max}(R) \nonumber \\&\quad +e^{\alpha (\tau _{p,q}^{2}-\tau _{p,q}^{1})} \frac{(\tau _{p,q}^{1}-\tau _{p,q}^{2})^{2}}{2}\varUpsilon _{max}(S)\nonumber \\&\quad +e^{\alpha \tau _{p}^{2}} \frac{(\tau _{p}^{2})^{3}}{2} \varUpsilon _{max}(E_1)\nonumber \\&\quad +e^{\alpha \tau _{p}^{2}} \frac{(\tau _{p}^{2})^{3}}{2} \varUpsilon _{max}(E_2) \bigg ] \nonumber \\&\quad \times \sup _{{-\tau _{p^{2}}}\le s \le 0} \left\{ \psi ^{T}(s){\mathfrak {D}}\psi (s),{\dot{\psi }}^{T}(s){\mathfrak {D}}{\dot{\psi }}^{T}(s))\right\} , \nonumber \\&\le \bigg [\varUpsilon _2+e^{\alpha \tau _{p}^{2}} \tau _{p}^{2} \varUpsilon _3+e^{\alpha \tau _{p}^{2}} \tau _{p}^{2} \varUpsilon _4\nonumber \\&\quad +e^{\alpha (\tau _{p}^{2}-\tau _{p,q}^{1})} (\tau _{p,q}^{1}-\tau _{p,q}^{2}) \varUpsilon _5+e^{\alpha \tau _{p}^{2}}\frac{(\tau _{p}^{2})^{2}}{2}\varUpsilon _6 \nonumber \\&\quad +e^{\alpha \tau _{p}^{2}}\frac{(\tau _{p}^{2})^{2}}{2}\varUpsilon _7 +e^{\alpha (\tau _{p,q}^{2}-\tau _{p,q}^{1})} \frac{(\tau _{p,q}^{1}-\tau _{p,q}^{2})^{2}}{2}\varUpsilon _8\nonumber \\&\quad +e^{\alpha \tau _{p}^{2}} \frac{(\tau _{p}^{2})^{3}}{2} \varUpsilon _9+e^{\alpha \tau _{p}^{2}} \frac{(\tau _{p}^{2})^{3}}{2} \varUpsilon _{10}\bigg ]C_1. \end{aligned}$$
(46)
$$\begin{aligned}&=w_f C_1. \end{aligned}$$
(47)

From (44), we can get

$$\begin{aligned} \varUpsilon _1{\mathbb {E}}\{\varPsi (t){\mathfrak {D}}_{p,q}\varPsi (t)&\le {\mathbb {E}}\{V(\varPsi (t),p,q,t)\}\nonumber \\&<\kappa ^{{V}_p}e^{{z}\alpha }\{V(0)+w_z(1-e^{-\alpha z})\}. \end{aligned}$$
(48)

Then, in accordance with (46) and (48), we have

$$\begin{aligned} {\mathbb {E}}\{\varPsi ^{T}(t){\mathfrak {D}}_{p,q}\varPsi (t)\}&\le \frac{\kappa ^{{V}_p}e^{\alpha {z}}\{V(0)+w_z(1-e^{-\alpha z})\}}{\varUpsilon _1}\nonumber \\&\le \frac{\kappa ^{\frac{m}{\tau _{\alpha }}}e^{\alpha {z}}w_f C_1}{\varUpsilon _1}. \end{aligned}$$
(49)

From the relation (14), it is obvious that \({\mathbb {E}}\{\varPsi (t){\mathfrak {D}}_{p,q}\varPsi (t)\}<C_2 \ \forall t \in [0,{z}]\). Hence, finite-time exponential synchronization of HHCNNs (1) is achieved in accordance with Definition 2.1 of [30] under the control design (5). Thus, the proof of this theorem ends.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakthivel, R., Aravinth, N., Aouiti, C. et al. Finite-time synchronization of hierarchical hybrid coupled neural networks with mismatched quantization. Neural Comput & Applic 33, 16881–16897 (2021). https://doi.org/10.1007/s00521-021-06049-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-021-06049-9

Keywords

Navigation