Multi-deep features fusion for high-resolution remote sensing image scene classification | Neural Computing and Applications Skip to main content
Log in

Multi-deep features fusion for high-resolution remote sensing image scene classification

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In view of the small number of categories and the relatively little amount of labeled data, it is challenging to apply the fusion of deep convolution features directly to remote sensing images. To address this issue, we propose a pyramid multi-subset feature fusion method, which can effectively fuse the deep features extracted from different pre-trained convolutional neural networks and integrate the global and local information of the deep features, thereby obtaining stronger discriminative and low-dimensional features. By introducing the idea of weighting the difference between different categories, the weight discriminant correlation analysis method is designed to make it pay more attention to those categories that are not easy to distinguish. In order to mine global and local feature information, the pyramid method is employed to divide feature fusion into several layers. Each layer divides the features into several subsets and then performs feature fusion on the corresponding feature subsets, and the number of subsets from top to bottom gradually increases. Feature fusion at the top of the pyramid obtains a global representation, while feature fusion at the bottom obtains a local detail representation. Our experiment results on three public remote sensing image data sets demonstrate that the proposed multi-deep features fusion method produces improvements over other state-of-the-art deep learning methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Andrew G, Arora R, Bilmes J, Livescu K (2013) Deep canonical correlation analysis. In: International conference on international conference on machine learning, pp III–1247

  2. Anwer RM, Khan FS, van de Weijer J, Molinier M, Laaksonen J (2018) Binary patterns encoded convolutional neural networks for texture recognition and remote sensing scene classification. ISPRS J Photogramm Remote Sens 138:74–85

    Google Scholar 

  3. Castelluccio M, Poggi G, Sansone C, Verdoliva L (2015) Land use classification in remote sensing images by convolutional neural networks. arXiv preprint arXiv:1508.00092

  4. Chaib S, Liu H, Gu Y, Yao H (2017) Deep feature fusion for VHR remote sensing scene classification. IEEE Trans Geosci Remote Sens 55(8):4775–4784

    Google Scholar 

  5. Chang CC, Lin CJ (2011) Libsvm: a library for support vector machines. ACM Trans Intell Syst Technol (TIST) 2(3):27. https://doi.org/10.1145/1961189.1961199

    Article  Google Scholar 

  6. Chaudhuri B, Demir B, Chaudhuri S, Bruzzone L (2018) Multilabel remote sensing image retrieval using a semisupervised graph-theoretic method. IEEE Trans Geosci Remote Sens 56(2):1144–1158

    Google Scholar 

  7. Chen C, Zhang B, Su H, Li W, Wang L (2016) Land-use scene classification using multi-scale completed local binary patterns. Signal Image video Process 10(4):745–752. https://doi.org/10.1007/s11760-015-0804-2

    Article  Google Scholar 

  8. Chen S, Tian Y (2015) Pyramid of spatial relatons for scene-level land use classification. IEEE Trans Geosci Remote Sens 53(4):1947–1957. https://doi.org/10.1109/TGRS.2014.2351395

    Article  Google Scholar 

  9. Cheng G, Han J, Lu X (2017) Remote sensing image scene classification: benchmark and state of the art. Proc IEEE 105(10):1865–1883. https://doi.org/10.1109/JPROC.2017.2675998

    Article  Google Scholar 

  10. Cheng G, Yang C, Yao X, Guo L, Han J (2018) When deep learning meets metric learning: remote sensing image scene classification via learning discriminative cnns. IEEE Trans Geosci Remote Sens 56(5):2811–2821

    Google Scholar 

  11. Cheng G, Zhou P, Han J (2016) Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images. IEEE Trans Geosci Remote Sens 54(12):7405–7415

    Google Scholar 

  12. Dao-Qiang PYZ (2008) Semi-supervised canonical correlation analysis algorithm. J Softw 11:008

    Google Scholar 

  13. Fei-Fei L, Fergus R, Perona P (2007) Learning generative visual models from few training examples: an incremental Bayesian approach tested on 101 object categories. Comput Vis Image Underst 106(1):59–70

    Google Scholar 

  14. Flores E, Zortea M, Scharcanski J (2019) Dictionaries of deep features for land-use scene classification of very high spatial resolution images. Pattern Recognit 89:32–44

    Google Scholar 

  15. Georganos S, Grippa T, Vanhuysse S, Lennert M, Shimoni M, Wolff E (2018) Very high resolution object-based land use-land cover urban classification using extreme gradient boosting. IEEE Geosci Remote Sens Lett 15:607–611

    Google Scholar 

  16. Guo Y, Ji J, Lu X, Huo H, Fang T, Li D (2019) Global-local attention network for aerial scene classification. IEEE Access 7:67200–67212

    Google Scholar 

  17. Haghighat M, Abdel-Mottaleb M, Alhalabi W (2016) Discriminant correlation analysis: real-time feature level fusion for multimodal biometric recognition. IEEE Trans Inf Forensics Secur 11(9):1984–1996

    Google Scholar 

  18. Han W, Feng R, Wang L, Cheng Y (2018) A semi-supervised generative framework with deep learning features for high-resolution remote sensing image scene classification. ISPRS J Photogramm Remote Sens 145:23–43

    Google Scholar 

  19. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778

  20. Hotelling H (1936) Relations between two sets of variates. Biometrika 28(3/4):321–377

    MATH  Google Scholar 

  21. Hu F, Xia GS, Hu J, Zhang L (2015) Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery. Remote Sens 7(11):14680–14707

    Google Scholar 

  22. Huang G, Liu Z, Van Der Maaten L, Weinberger K.Q (2017) Densely connected convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4700–4708

  23. Huang H, Xu K (2019) Combing triple-part features of convolutional neural networks for scene classification in remote sensing. Remote Sens 11(14):1687

    Google Scholar 

  24. Kassawmar T, Eckert S, Hurni K, Zeleke G, Hurni H (2018) Reducing landscape heterogeneity for improved land use and land cover (lulc) classification across the large and complex ethiopian highlands. Geocarto Int 33(1):53–69

    Google Scholar 

  25. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105

  26. Lazebnik S, Schmid C, Ponce J (2006) Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: 2006 IEEE computer society conference on computer vision and pattern recognition (CVPR’06), vol 2, pp 2169–2178. IEEE. https://doi.org/10.1109/CVPR.2006.68

  27. Li K, Zou C, Bu S, Liang Y, Zhang J, Gong M (2018) Multi-modal feature fusion for geographic image annotation. Pattern Recognit 73:1–14

    Google Scholar 

  28. Li L, Ge H, Gao J, Zhang Y (2019) Hyperspectral image feature extraction using Maclaurin series function curve fitting. Neural Process Lett 49(1):357–374

    Google Scholar 

  29. Li L, Ge H, Gao J, Zhang Y, Tong Y, Sun J (2020) A novel geometric mean feature space discriminant analysis method for hyperspectral image feature extraction. Neural Process Lett 51(1):515–542

    Google Scholar 

  30. Li Y, Zhang Y, Huang X, Zhu H, Ma J (2018) Large-scale remote sensing image retrieval by deep hashing neural networks. IEEE Trans Geosci Remote Sens 56(2):950–965

    Google Scholar 

  31. Liang M, Jiao L, Yang S, Liu F, Hou B, Chen H (2018) Deep multiscale spectral-spatial feature fusion for hyperspectral images classification. IEEE J Sel Top Appl Earth Obs Remote Sens 11(8):2911–2924

    Google Scholar 

  32. Liu G, Yang J, Li Z (2015) Content-based image retrieval using computational visual attention model. Pattern Recognit 48(8):2554–2566. https://doi.org/10.1016/j.patcog.2015.02.005

    Article  Google Scholar 

  33. Liu Y, Liu Y, Ding L (2018) Scene classification based on two-stage deep feature fusion. IEEE Geosci Remote Sens Lett 15(2):183–186

    Google Scholar 

  34. Marmanis D, Datcu M, Esch T, Stilla U (2016) Deep learning earth observation classification using imagenet pretrained networks. IEEE Geosci Remote Sens Lett 13(1):105–109. https://doi.org/10.1109/LGRS.2015.2499239

    Article  Google Scholar 

  35. Melzer T, Reiter M, Bischof H (2003) Appearance models based on kernel canonical correlation analysis. Pattern Recognit 36(9):1961–1971

    MATH  Google Scholar 

  36. Miao Q, Li Y, Ouyang W, Ma Z, Xu X, Shi W, Cao X (2018) Multimodal gesture recognition based on the resc3d network. In: IEEE International conference on computer vision workshop, pp 3047–3055

  37. Monwar MM, Gavrilova ML (2009) Multimodal biometric system using rank-level fusion approach. IEEE Trans Syst Man Cybern Part B (Cybern) 39(4):867–878

    Google Scholar 

  38. Napoletano P (2018) Visual descriptors for content-based retrieval of remote-sensing images. Int J Remote Sens 39(5):1343–1376

    Google Scholar 

  39. Nogueira K, Penatti O, dos Santos J (2016, 2017) Towards better exploiting convolutional neural networks for remote sensing scene classification. Pattern Recognit 61:539–556. https://doi.org/10.1016/j.patcog.2016.07.001

  40. Nurwanda A, Honjo T (2018) Analysis of land use change and expansion of surface urban heat island in bogor city by remote sensing. ISPRS Int J Geo-Inf 7(5):165

    Google Scholar 

  41. Othman E, Bazi Y, Alajlan N, Alhichri H, Melgani F (2016) Using convolutional features and a sparse autoencoder for land-use scene classification. Int J Remote Sens 37(10):2149–2167

    Google Scholar 

  42. Pathiranage ISS, Kantakumar LN, Sundaramoorthy S (2018) Remote sensing data and sleuth urban growth model: as decision support tools for urban planning. Chin Geogr Sci 28(2):274–286

    Google Scholar 

  43. Penatti OA, Nogueira K, dos Santos JA (2015) Do deep features generalize from everyday objects to remote sensing and aerial scenes domains? In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp 44–51

  44. Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556

  45. Song W, Li S, Fang L, Lu T (2018) Hyperspectral image classification with deep feature fusion network. IEEE Trans Geosci Remote Sens 56(6):3173–3184

    Google Scholar 

  46. Sun QS, Liu ZD, Heng PA, Xia DS (2005) A theorem on the generalized canonical projective vectors. Pattern Recognit 38(3):449–452

    MATH  Google Scholar 

  47. Sun QS, Zeng SG, Liu Y, Heng PA, Xia DS (2005) A new method of feature fusion and its application in image recognition. Pattern Recognit 38(12):2437–2448

    Google Scholar 

  48. Sun T, Chen S, Yang J, Shi P (2008) A novel method of combined feature extraction for recognition. In: Eighth IEEE international conference on data mining, 2008. ICDM’08. IEEE, pp 1043–1048

  49. Szegedy C, Ioffe S, Vanhoucke V, Alemi AA (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: AAAI, vol 4, p 12

  50. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1–9

  51. Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016) Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2818–2826

  52. Wang Q, Liu S, Chanussot J, Li X (2018) Scene classification with recurrent attention of vhr remote sensing images. IEEE Trans Geosci Remote Sens 57(2):1155–1167

    Google Scholar 

  53. Wang W, Arora R, Livescu K, Bilmes J (2015) On deep multi-view representation learning. In: International conference on machine learning, pp 1083–1092

  54. Xia GS, Hu J, Hu F, Shi B, Bai X, Zhong Y, Zhang L, Lu X (2017) Aid: a benchmark data set for performance evaluation of aerial scene classification. IEEE Trans Geosci Remote Sens 55(7):3965–3981

    Google Scholar 

  55. Xu K, Huang H, Li Y, Shi G (2020) Multilayer feature fusion network for scene classification in remote sensing. IEEE Geosci Remote Sens Lett 99:1–5

    Google Scholar 

  56. Yang J, Jiang YG, Hauptmann AG, Ngo CW (2007) Evaluating bag-of-visual-words representations in scene classification. In: Proceedings of the international workshop on multimedia information retrieval. ACM, pp 197–206

  57. Yang J, Yang JY, Zhang D, Lu JF (2003) Feature fusion: parallel strategy vs. serial strategy. Pattern Recognit 36(6):1369–1381

    MATH  Google Scholar 

  58. Yang Y, Newsam S (2010) Bag-of-visual-words and spatial extensions for land-use classification. In: Proceedings of the 18th SIGSPATIAL international conference on advances in geographic information systems. ACM, pp 270–279. https://doi.org/10.1145/1869790.1869829

  59. Yu Y, Gong Z, Wang C, Zhong P, (2017, 2018) An unsupervised convolutional feature fusion network for deep representation of remote sensing images. IEEE Geosci Remote Sens Lett 15(1):23–27

  60. Yu Y, Li X, Liu F (2019) Attention gans: unsupervised deep feature learning for aerial scene classification. IEEE Trans Geosci Remote Sens 58(1):519–531

    Google Scholar 

  61. Yu Y, Liu F (2018) A two-stream deep fusion framework for high-resolution aerial scene classification. Comput Intell Neurosci 2018:1–13

    Google Scholar 

  62. Yuan B, Li S, Li N (2018) Multiscale deep features learning for land-use scene recognition. J Appl Remote Sens 12(1):015010

    Google Scholar 

  63. Zhang F, Du B, Zhang L (2016) Scene classification via a gradient boosting random convolutional network framework. IEEE Trans Geosci Remote Sens 54(3):1793–1802

    Google Scholar 

  64. Zhang L, Zhang L, Du B (2016) Deep learning for remote sensing data: a technical tutorial on the state of the art. IEEE Geosci Remote Sens Mag 4(2):22–40

    Google Scholar 

  65. Zhou W, Newsam S, Li C, Shao Z (2018) Patternnet: a benchmark dataset for performance evaluation of remote sensing image retrieval. ISPRS J Photogramm Remote Sens 145:197–209

    Google Scholar 

  66. Zhu J, Hu J, Jia S, Jia X, Li Q (2018) Multiple 3-d feature fusion framework for hyperspectral image classification. IEEE Trans Geosci Remote Sens 56(4):1873–1886

    Google Scholar 

Download references

Acknowledgements

This work is supported in part by the Hong Kong Research Grants Council (Project C1007-15G) and the Hong Kong Institute for Data Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baohua Yuan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, B., Han, L., Gu, X. et al. Multi-deep features fusion for high-resolution remote sensing image scene classification. Neural Comput & Applic 33, 2047–2063 (2021). https://doi.org/10.1007/s00521-020-05071-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-020-05071-7

Keywords

Navigation