Intelligent exponential sliding-mode control with uncertainty estimator for antilock braking systems | Neural Computing and Applications Skip to main content
Log in

Intelligent exponential sliding-mode control with uncertainty estimator for antilock braking systems

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

The purpose of the antilock braking system (ABS) is to regulate the wheel longitudinal slip at its optimum point in order to generate the maximum braking force; however, the vehicle braking dynamic is highly nonlinear. To relax the requirement of detailed system dynamics, this paper proposes an intelligent exponential sliding-mode control (IESMC) system for an ABS. A functional recurrent fuzzy neural network (FRFNN) uncertainty estimator is designed to approximate the unknown nonlinear term of ABS dynamics, and the parameter adaptation laws are derived in the sense of projection algorithm and Lyapunov stability theorem to ensure the stable control performance. Since the outputs of the functional expansion unit are used as the output weights of the FRFNN uncertainty estimator, the FRFNN can effectively capture the input–output dynamic mapping. In addition, a nonlinear reaching law, which contains an exponential term of sliding surface to smoothly adapt the variations of sliding surface, is designed to reduce the level of the chattering phenomenon. Finally, the simulation results demonstrate that the proposed IESMC system can achieve robustness slip tracking performance in different road conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Tan HS, Tomizuka M (1990) Discrete-time controller design for robust vehicle traction. IEEE Control Syst Mag 10(3):107–113

    Article  Google Scholar 

  2. Johansen TA, Petersen I, Kalkkuhl J, Ludemann J (2003) Gain-scheduled wheel slip control in automotive brake systems. IEEE Trans Control Syst Technol 11(6):799–811

    Article  Google Scholar 

  3. Oniz Y, Kayacan E, Kaynak O (2009) A dynamic method to forecast the wheel slip for antilock braking system and its experimental evaluation. IEEE Trans Syst Man, Cybern, Part B 39(2):551–560

    Article  Google Scholar 

  4. Kayacan E, Kaynak O (2009) A grey system modeling approach for sliding mode control of antilock braking system. IEEE Trans Ind Electron 56(8):3244–3252

    Article  Google Scholar 

  5. Yi J, Alvarez L, Horowitz R (1992) Adaptive emergency braking control with underestimation of friction coefficient. IEEE Trans Control Syst Technol 10(3):381–392

    Article  Google Scholar 

  6. Nešić D, Mohammadi A, Manzie C (2013) A framework for extremum seeking control of systems with parameter uncertainties. IEEE Trans Autom Control 49(8):1292–1302

    MathSciNet  Google Scholar 

  7. Jing H, Liu Z, Chen H (2011) A switched control strategy for antilock braking system with on/off valves. IEEE Trans Veh Technol 60(4):1470–1484

    Article  Google Scholar 

  8. Khanesar MA, Kayacan E, Teshnehlab M, Kaynak O (2012) Extended Kalman filter based learning algorithm for type-2 fuzzy logic systems and its experimental evaluation. IEEE Trans Ind Electron 59(11):4443–4455

    Article  Google Scholar 

  9. Sharkawy AB (2010) Genetic fuzzy self-tuning PID controllers for antilock braking systems. Eng Appl Artif Intell 23(7):1041–1052

    Article  Google Scholar 

  10. Wang WY, Li IH, Chen MC, Su SF, Hsu SB (2009) Dynamic slip-ratio estimation and control of antilock braking systems using an observer-based direct adaptive fuzzy-neural controller. IEEE Trans Ind Electron 56(5):1746–1756

    Article  Google Scholar 

  11. Topalov AV, Oniz Y, Kayacan E, Kaynak O (2011) Neuro-fuzzy control of antilock braking system using sliding mode incremental learning algorithm. Neurocomputing 74(11):1883–1893

    Article  Google Scholar 

  12. Hsu CF, Kuo TC (2014) Adaptive exponential-reaching sliding-mode control for antilock braking systems. Nonlinear Dyn 77(3):993–1010

    Article  Google Scholar 

  13. Poursamad A (2009) Adaptive feedback linearization control of antilock braking systems using neural networks. Mechatronics 19(5):763–773

    Article  MathSciNet  Google Scholar 

  14. Lin CM, Li HY (2013) Intelligent hybrid control system design for antilock braking systems using self-organizing function-link fuzzy cerebellar model articulation controller. IEEE Trans Fuzzy Syst 21(6):1044–1055

    Article  Google Scholar 

  15. Tong SC, Li HX (2003) Fuzzy adaptive sliding-mode control for MIMO nonlinear systems. IEEE Trans Fuzzy Syst 11(3):354–360

    Article  Google Scholar 

  16. Hsu CF (2013) Adaptive neural complementary sliding-mode control via functional-linked wavelet neural network. Eng Appl Artif Intell 26(4):1221–1229

    Article  Google Scholar 

  17. Hsu CF (2014) Intelligent total sliding-mode control with dead-zone parameter modification for a DC motor driver. Control Theory Appl 8(11):916–926

    Article  Google Scholar 

  18. Wang LX (1994) Adaptive fuzzy systems and control: design and stability analysis. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  19. Tong SC, Li HX, Chen GR (2004) Adaptive fuzzy decentralized control for a class of large-scale nonlinear systems. IEEE Trans Syst, Man, Cybern, Part B 34(1):770–775

    Article  Google Scholar 

  20. Londhe PS, Patre BM, Tiwari AP (2014) Design of single-input fuzzy logic controller for spatial control of advanced heavy water reactor. IEEE Trans Nucl Sci 61(2):901–911

    Article  Google Scholar 

  21. Lin FJ, Hung YC, Hwang JC, Chang IP, Tsai MT (2012) Digital signal processor-based probabilistic fuzzy neural network control of in-wheel motor drive for light electric vehicle. IET Electr Power Appl 6(2):47–61

    Article  Google Scholar 

  22. Wai RJ, Shih LC (2012) Adaptive fuzzy-neural-network design for voltage tracking control of a DC–DC boost converter. IEEE Trans Power Electron 27(4):2104–2115

    Article  Google Scholar 

  23. Lin CM, Li HY (2014) Intelligent control using wavelet fuzzy CMAC backstepping control system for two-axis linear piezoelectric ceramic motor drive systems. IEEE Trans Fuzzy Syst 22(4):791–802

    Article  Google Scholar 

  24. Han SI, Lee KS (2010) Robust friction state observer and recurrent fuzzy neural network design for dynamic friction compensation with backstepping control. Mechatronics 20(3):384–401

    Article  Google Scholar 

  25. Mon YJ, Lin CM (2012) Supervisory recurrent fuzzy neural network control for vehicle collision avoidance system design. Neural Comput Appl 21(8):2163–2169

    Article  Google Scholar 

  26. Lin YY, Chang JY, Lin CT (2013) Identification and prediction of dynamic systems using an interactively recurrent self-evolving fuzzy neural network. IEEE Trans Neural Netw Learn Syst 24(2):310–321

    Article  Google Scholar 

  27. Wai RJ, Lin YW (2013) Adaptive moving-target tracking control of a vision-based mobile robot via a dynamic petri recurrent fuzzy neural network. IEEE Trans Fuzzy Syst 21(4):688–701

    Article  Google Scholar 

  28. Chakravarty S, Dash PK (2012) A PSO based integrated functional link net and interval type-2 fuzzy logic system for predicting stock market indices. Appl Soft Comput 12(2):931–941

    Article  Google Scholar 

  29. Wu CF, Lin CJ, Lee CY (2012) Applying a functional neuro-fuzzy network to real-time lane detection and front-vehicle distance measurement. IEEE Trans Syst, Man, Cybern, Part C 42(4):577–589

    Article  Google Scholar 

  30. Hsu CF (2013) A self-evolving functional-linked wavelet neural network for control applications. Appl Soft Comput 13(11):4392–4402

    Article  Google Scholar 

  31. Lin FJ, Teng LT, Lin JW, Chen SY (2009) Recurrent FL-based fuzzy neural network controlled induction generator system using improved particle swarm optimization. IEEE Trans Ind Electron 56(5):1557–1577

    Article  Google Scholar 

  32. Lin HY, Lin CJ, Wu CF (2012) A hybrid of differential evolution and cultural algorithm for recurrent functional neural fuzzy networks and its applications. Int J Fuzzy Syst 14(4):519–529

    Google Scholar 

  33. Rubio JJ, Torres C, Rivera R, Hernandez CA (2011) Comparison of four mathematical models for braking of a motorcycle. IEEE Lat Am Trans 9(5):630–637

    Article  Google Scholar 

  34. Slotine JJE, Li WP (1991) Applied nonlinear control. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  35. Lin CM, Hsu CF, Chen TY (2012) Adaptive fuzzy total sliding-mode control of unknown nonlinear systems. Int J Fuzzy Syst 14(3):434–443

    MathSciNet  Google Scholar 

  36. Juang CF, Chen JS (2006) Water bath temperature control by a recurrent fuzzy controller and its FPGA implementation. IEEE Trans Ind Electron 53(3):941–949

    Article  Google Scholar 

  37. Juang CF, Chen JS (2007) A recurrent fuzzy-network-based inverse modeling method for a temperature system control. IEEE Trans. Syst, Man, Cybern, Part C 37(3):410–417

    Article  Google Scholar 

  38. Rubio JJ (2014) Evolving intelligent algorithms for the modelling of brain and eye signals. Appl Soft Comput 14(B):259–268

    Article  Google Scholar 

  39. Reducindo I, Santana ERA, Delgado DUC, Alba A (2014) Registration of multimodal medical images by particle filter: evaluation and new results. IEEE Lat Am Trans 12(2):129–137

    Article  Google Scholar 

  40. Ye J (2014) Compound control of a compound cosine function neural network and PD for manipulators. Int J Control 87(10):2118–2129

    MathSciNet  MATH  Google Scholar 

  41. Rubio JJ (2014) Analytic neural network model of a wind turbine. Soft Comput. doi:10.1007/s00500-014-1290-0

    Google Scholar 

  42. Fallaha CJ, Saad M, Kanaan HY, Al-Haddad K (2011) Sliding-mode robot control with exponential reaching law. IEEE Trans Ind Electron 58(2):600–610

    Article  Google Scholar 

  43. Rubio JJ (2014) Adaptive least square control in discrete time of robotic arms. Soft Comput. doi:10.1007/s00500-014-1300-2

    Google Scholar 

  44. Hsu CF, Kuo TC (2014) Intelligent complementary sliding-mode control with dead-zone parameter modification. Appl Soft Comput 23(1):355–365

    Article  Google Scholar 

  45. Li Y, Tang Z, Zhan Y (2014) Two-dimensional bilinear preserving projections for image feature extraction and classification. Neural Comput Appl 24(3):901–999

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the reviewers for their valuable comments. The authors appreciate the partial financial support from the Ministry of Science and Technology of Republic of China under Grant MOST 103-2221-E-032-063-MY2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Fei Hsu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hsu, CF. Intelligent exponential sliding-mode control with uncertainty estimator for antilock braking systems. Neural Comput & Applic 27, 1463–1475 (2016). https://doi.org/10.1007/s00521-015-1946-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-015-1946-4

Keywords

Navigation