Global similarity preserving hashing | Soft Computing
Skip to main content

Global similarity preserving hashing

  • Foundations
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

Hashing learning has attracted increasing attention these years with the explosive increase in data volume. Most existing hashing learning methods can be divided into two stages. Firstly, obtain low-dimensional representation of the original data. Secondly, quantize the low-dimensional representation of each sample and map them to binary codes. This two-stage hashing framework separates projection operation and quantization operation apart, and the original data structure cannot be well preserved after this kind of two-stage operation. Considering this, global similarity preserving hashing (GSPH) is proposed, which utilizes a joint hashing framework to directly project the original data to hamming space, and reduces the projection error and the quantization loss simultaneously. Moreover, GSPH presents a global similarity-based data sample reconstruction method, which describes the intrinsic manifold structure of original data more precisely. The image retrieval experimental results on Corel, CIFAR, LabelMe and NUS-WIDE datasets illustrate that our algorithm outperforms several other state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Belkin M, Niyogi P (2003) Laplacian Eigenmaps for dimensionality reduction and data representation. Neural Comput 15(6):1373–1396

    Article  MATH  Google Scholar 

  • Cai D, He X, Han J (2007) Spectral regression for efficient regularized subspace learning. In: Proceedings of IEEE international conference on computer vision (ICCV). Rio de Janeiro

  • Chua T-S, Tang J, Hong R, Li H, Luo Z, Zheng Y-T (2009) NUS-WIDE: a real-world web image database from national university of Singapore. In: Proceedings of ACM international conference on image and video retrieval. Greece

  • Datar M, Immorlica N, Indyk P et al (2004) Locality-sensitive hashing scheme based on p-stable distributions. In: Proceedings of the twentieth annual symposium on computational geometry. ACM, pp 253–262

  • Gionis A, Indyk P, Motwani R (1999) Similarity search in high dimensions via hashing. VLDB 99(6):518–529

    Google Scholar 

  • Golub GH, Van Loan CF (1983) Matrix computations. Math Gaz 47(5 Series II):392–396

    MATH  Google Scholar 

  • Gong Y, Lazebnik S, Gordo A et al (2013) Iterative quantization: a procrustean approach to learning binary codes for large-scale image retrieval. Pattern Anal Mach Intell IEEE Trans 35(12):2916–2929

    Article  Google Scholar 

  • He X, Yan S, Hu Y et al (2005a) Face recognition using laplacianfaces. IEEE Trans Pattern Anal Mach Intell 27(3):328–340

  • He X, Cai D, Yan S et al (2005b) Neighborhood preserving embedding. In: Proceedings of tenth IEEE international conference on computer vision, pp 1208–1213

  • He J, Liu W, Chang SF (2010b) Scalable similarity search with optimized kernel hashing. In: Proceedings of the 16th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 1129–1138

  • Irie G, Li Z, Wu XM et al (2014) Locally linear hashing for extracting non-linear manifolds. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2115–2122

  • Jin Z, Li C, Lin Y et al (2013) Density sensitive hashing. IEEE Trans Cybern 44(8):1362–1371

    Article  Google Scholar 

  • Kong D, Ding CHQ, Huang H et al (2012a) An iterative locally linear embedding algorithm. arXiv preprint arXiv:1206.6463

  • Kong W, Li WJ, Guo M (2012b) Manhattan hashing for large-scale image retrieval. In: Proceedings of the 35th international ACM SIGIR conference on research and development in information retrieval. ACM, pp 45–54

  • Kramer O (2015b) Unsupervised nearest neighbor regression for dimensionality reduction. Soft Comput 19(6):1647–1661

  • Krizhevsky A, Hinton G (2009) Learning multiple layers of features from tiny images. Technical Report, University of Toronto

  • Kulis B, Jain P, Grauman K (2009) Fast similarity search for learned metrics. Pattern Anal Mach Intell IEEE Trans 31(12):2143–2157

    Article  Google Scholar 

  • Li J, Wang JZ (2003) Automatic linguistic indexing of pictures by a statistical modeling approach. Pattern Anal Mach Intell IEEE Trans 25(9):1075–1088

    Article  Google Scholar 

  • Ling P, Rong X, Dong Y et al (2015) Double-phase locality-sensitive hashing of neighborhood development for multi-relational data. Soft Comput 19(6):1553–1565

    Article  Google Scholar 

  • Liu W, Wang J, Kumar S et al (2011) Hashing with graphs. In: Proceedings of the 28th international conference on machine learning (ICML-11), pp 1–8

  • Liu W, Wang J, Ji R, et al (2012) Supervised hashing with kernels. In: Proceedings of computer vision and pattern recognition (CVPR), IEEE Conference on 2012. IEEE, pp 2074–2081

  • Liu Y, Bai X, Yang H et al (2015) Isometric mapping hashing. Graph-based representations in pattern recognition. Springer International Publishing, New York

    Google Scholar 

  • Lowe DG (2004) Distinctive image features from scaleinvariant keypoints. Int J Comput Vis 60(2):91–110

    Article  Google Scholar 

  • Min W, Lu K, He X (2004) Locality pursuit embedding. Pattern Recognit 37(4):781–788

    Article  MATH  Google Scholar 

  • Nocedal J, Wright S (2006) Numerical optimization. Springer Science and Business Media, New York

    MATH  Google Scholar 

  • Oliva A, Torralba A (2001) Modeling the shape of the scene: a holistic representation of the spatial envelope. Int J Comput Vis 42(3):145–175

    Article  MATH  Google Scholar 

  • Pang Y, Zhang L, Liu Z et al (2005) Neighborhood preserving projections (NPP): a novel linear dimension reduction method. In: Proceedings of international conference on advances in intelligent computing. Springer, pp 117–125

  • Qiao H, Zhang P, Zhang B et al (2010) Learning an intrinsic-variable preserving manifold for dynamic visual tracking. IEEE Trans Syst Man Cybern Part B (Cybernetics) 40(3):868–880

    Article  Google Scholar 

  • Qiao H, Zhang P, Wang D et al (2013) An explicit nonlinear mapping for manifold learning. IEEE Trans Cybern 43(1):51–63

    Article  Google Scholar 

  • Raginsky M, Lazebnik S (2009) Locality-sensitive binary codes from shift-invariant kernels. In: NIPS, pp 1509–1517

  • Roweis ST, Saul LK (2009) Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500):2323–2326

    Article  Google Scholar 

  • Russell BC, Torralba A, Murphy KP et al (2008) LabelMe: a database and web-based tool for image annotation. Int J Comput Vis 77(1–3):157–173

    Article  Google Scholar 

  • Shen F, Shen C, Shi Q et al (2013) Inductive hashing on manifolds. In: Proceedings of computer vision and pattern recognition (CVPR), IEEE conference on 2013. IEEE, pp 1562–1569

  • Soman G, John JK (2016) Block-based forgery detection using global and local features. In: Proceedings of the international conference on soft computing systems. Springer India, pp 147–155

  • Strecha C, Bronstein AM, Bronstein MM et al (2011) LDAHash: improved matching with smaller descriptors. IEEE Trans Pattern Anal Mach Intell 34(1):66–78

    Article  Google Scholar 

  • Wang XJ, Zhang L, Jing F et al (2006) Annosearch: image auto-annotation by search. In: Computer vision and pattern recognition, IEEE computer society conference on 2006. IEEE, vol 2, pp 1483–1490

  • Wang J, Kumar S, Chang SF (2010) Semi-supervised hashing for scalable image retrieval. In: IEEE conference on computer vision and pattern recognition. IEEE computer society, pp 3424–3431

  • Wang J, Kumar S, Chang SF (2012) Semi-supervised hashing for large-scale search. Pattern Anal Mach Intell IEEE Trans 34(12):2393–2406

    Article  Google Scholar 

  • Wang H, Feng L, Liu Y (2015a) Metric learning with geometric mean for similarities measurement. Soft Comput: 1–11

  • Wang J, Miao M, Gao Y et al (2015b) Enabling efficient approximate nearest neighbor search for outsourced database in cloud computing. Soft Comput: 1–9

  • Wang H, Feng L, Zhang J, Liu Y (2016) Semantic discriminative metric learning for image similarity measurement. IEEE Trans Multimed 18(8):1579–1589

  • Wei H, Lang B, Zuo QS (2014) An image representation of infrastructure based on non-classical receptive field. Soft Comput 18(1):109–123

    Article  Google Scholar 

  • Weiss Y, Torralba A, Fergus R (2009) Spectral hashing. In: Advances in neural information processing systems, pp 1753–1760

  • Wen Z, Yin W (2013) A feasible method for optimization with orthogonality constraints. Math Progr 142(1–2):397–434

    Article  MathSciNet  MATH  Google Scholar 

  • Yang J, Zhang D, Yang JY (2006) Locally principal component learning for face representation and recognition. Neurocomputing 69(13–15):1697–1701

    Article  Google Scholar 

  • Yu F, Li Y, Wei B et al (2016) Interactive differential evolution for user-oriented image retrieval system. Soft Comput 20(2):449–463

    Article  Google Scholar 

  • Zhang Z, Ye N (2011) Learning a tensor subspace for semi-supervised dimensionality reduction. Soft Comput 15(2):383–395

    Article  MATH  Google Scholar 

  • Zhang D, Wang F, Si L (2011) Composite hashing with multiple information sources. In: Proceedings of the 34th international ACM SIGIR conference on research and development in information retrieval. ACM, pp 225–234

  • Zhu X, Huang Z, Shen HT et al (2013) Linear cross-modal hashing for efficient multimedia search. In: Proceedings of the 21st ACM international conference on multimedia. ACM, pp 143–152

  • Zou Q, Wang J, Ye J et al (2016) Efficient and secure encrypted image search in mobile cloud computing. Soft Comput: 1–11

Download references

Acknowledgements

This study was funded by National Natural Science Foundation of Peoples Republic of China (61173163, 61370200, 61672130, 61602082) and China Postdoctoral Science Foundation (ZX20150629).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Feng.

Ethics declarations

Conflict of interest

Yang Liu, Lin Feng, Shenglan Liu and Muxin Sun declare that they have no conflict of interest.

Human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by A. Di Nola.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Feng, L., Liu, S. et al. Global similarity preserving hashing. Soft Comput 22, 2105–2120 (2018). https://doi.org/10.1007/s00500-017-2683-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-017-2683-7

Keywords