Boundary Control approach to the spectral estimation problem: the case of multiple poles | Mathematics of Control, Signals, and Systems Skip to main content
Log in

Boundary Control approach to the spectral estimation problem: the case of multiple poles

  • Original Article
  • Published:
Mathematics of Control, Signals, and Systems Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

There exist many methods for solving the spectral estimation problem. This paper proposes a new approach to this problem based on the Boundary Control method. We show that the problem of decomposition of a signal modeled by a sum of exponentials with polynomial coefficients can be reduced to an identification problem for a discrete time linear dynamical system. It follows that values of exponentials can be found solving a generalized eigenvalue problem as in the Matrix Pencil method. We also give exact formulas for the polynomial amplitudes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Åström K, Eykhoff P (1971) System identification—a survey. Automatica 7: 123–167

    Article  MATH  Google Scholar 

  2. Avdonin S, Belishev M (1996) Boundary control and dynamical inverse problem for nonselfadjoint Sturm-Liouville operator. Control Cybern 25: 429–440

    MATH  MathSciNet  Google Scholar 

  3. Avdonin S, Lenhart S, Protopopescu V (2002) Schrödinger equation by the Boundary Control method. Inverse Probl 18: 41–57

    Article  MathSciNet  Google Scholar 

  4. Avdonin S, Bulanova A, Nicolsky D (2009) Boundary control approach to the spectral estimation problem. The case of simple poles. Sampl Theory Signal Image Process 8(3): 225–248

    MATH  MathSciNet  Google Scholar 

  5. Avdonin S, Geztesy F, Makarov K (2010) Spectral estimation and inverse initial boundary value problems. Inverse Probl Imaging 4(1): 1–9

    Article  MATH  MathSciNet  Google Scholar 

  6. Badeau R, David B, Richard G (2006) High-resolution spectral analysis of mixtures of complex exponentials modulated by polynomials. IEEE Trans Signal Process 54(4): 1341–1350

    Article  Google Scholar 

  7. Belishev M (1997) Boundary Control method in reconstruction of manifolds and metrics (the BC method). Inverse Probl 13: R1–R45

    Article  MATH  MathSciNet  Google Scholar 

  8. Belishev MI (2001) Dynamical systems with boundary control: models and characterization of inverse data. Inverse Probl 17(4): 659–682

    Article  MATH  MathSciNet  Google Scholar 

  9. Costa O, Fragoso M, Marques R (2005) Discrete-time Markov jump linear systems. Springer, London

    MATH  Google Scholar 

  10. De Moor B, Vandewalle J (1987) A geometrical strategy for the identification of state space models of linear multivariable systems with singular value decomposition. In: Proceedings of the 3rd international symposium on applications of multivariable system techniques, April 13–15, Plymouth, UK, pp 59–69

  11. Elaydi SN (1999) An introduction to difference equations, 2nd edn. Springer, New York

    MATH  Google Scholar 

  12. Eykhoff P (1974) System identification. Wiley, London

    Google Scholar 

  13. Hua Y, Sarkar TK (1990) Matrix pencil method for estimating parameters of exponentially damped/ undamped sinusoids in noise. IEEE Trans Acoust Speech Signal Process 38(5): 814–824

    Article  MATH  MathSciNet  Google Scholar 

  14. Hua, Y, Gershman, AB, Cheng, Q (eds) (2004) High-resolution and robust signal processing. Marcel Dekker, New York, Basel

    Google Scholar 

  15. Krabs W, Pickl SW (2003) Analysis, controllability and optimization of time-discrete systems and dynamical games. Springer, Berlin, Heidelberg

    Book  MATH  Google Scholar 

  16. Marple SL (1987) Digital spectral analysis with applications. Prentice-Hall

  17. Moonen M, De Moor B (1992) Comments on ‘State-space model identification with data correlation’. Int J Control 55(1): 257–259

    Article  MATH  Google Scholar 

  18. Nagesha V, Kay S (1994) On frequency estimation with the IQML algorithm. IEEE Trans Signal Process 42(9): 2509–2513

    Article  Google Scholar 

  19. Norton J (1986) An introduction to identification. Academic Press, London

    MATH  Google Scholar 

  20. Ottersten B, Viberg M, Kailath T (1991) Performance analysis of the total least-squares ESPRIT algorithm. IEEE Trans Signal Process 39(5): 1122–1135

    Article  MATH  Google Scholar 

  21. de Prony BGR (1795) Essai éxperimental et analytique: sur les lois de la dilatabilité de fluides élastique et sur celles de la force expansive de la vapeur de l’alkool, à différentes températures. J de l’ École Polytech 1(22): 24–76

    Google Scholar 

  22. Roy R, Kailath T (1990) ESPRIT—estimation of signal parameters via rotational invariance techniques. Opt Eng 29(4): 296–313

    Article  Google Scholar 

  23. Roy R, Paulraj A, Kailath T (1986) Multiple emitter location and signal parameter estimation. IEEE Trans Acoust Speech Signal Process 34(5): 1340–1342

    Article  Google Scholar 

  24. Sarachik PE (1997) Principles of linear systems. Cambridge University Press

  25. Sarkar TK, Wicks MC, Salazar-Palma M, Bonneau RJ (2003) Smart antennas. Wiley, Hoboken, New Jersey

    Book  Google Scholar 

  26. Schmidt R (1986) Multiple emitter location and signal parameter estimation. IEEE Trans Antennas Propag 34(3): 276–280

    Article  Google Scholar 

  27. Van Overschee P, De Moor B (1996) Subspace identification for linear systems: theory, implementation, applications. Kluwer Academic Publishers, Dordrecht, Netherlands

    MATH  Google Scholar 

  28. Van Overschee P, De Moor B, Suykens J (1991) Subspace algorithms for system identification and stochastic realization. In: Proceedings of conference on mathematical theory for networks and systems, MTNS, Mita Press, Kobe, Japan, pp 589–595

  29. Verhaegen M, Dewilde P (1992) Subspace model identification, part I: the output-error state space model identification class of algorithms. Int J Control 56: 1187–1210

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Bulanova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avdonin, S., Bulanova, A. Boundary Control approach to the spectral estimation problem: the case of multiple poles. Math. Control Signals Syst. 22, 245–265 (2011). https://doi.org/10.1007/s00498-010-0052-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00498-010-0052-5

Keywords