Abstract
There exist many methods for solving the spectral estimation problem. This paper proposes a new approach to this problem based on the Boundary Control method. We show that the problem of decomposition of a signal modeled by a sum of exponentials with polynomial coefficients can be reduced to an identification problem for a discrete time linear dynamical system. It follows that values of exponentials can be found solving a generalized eigenvalue problem as in the Matrix Pencil method. We also give exact formulas for the polynomial amplitudes.
Similar content being viewed by others
References
Åström K, Eykhoff P (1971) System identification—a survey. Automatica 7: 123–167
Avdonin S, Belishev M (1996) Boundary control and dynamical inverse problem for nonselfadjoint Sturm-Liouville operator. Control Cybern 25: 429–440
Avdonin S, Lenhart S, Protopopescu V (2002) Schrödinger equation by the Boundary Control method. Inverse Probl 18: 41–57
Avdonin S, Bulanova A, Nicolsky D (2009) Boundary control approach to the spectral estimation problem. The case of simple poles. Sampl Theory Signal Image Process 8(3): 225–248
Avdonin S, Geztesy F, Makarov K (2010) Spectral estimation and inverse initial boundary value problems. Inverse Probl Imaging 4(1): 1–9
Badeau R, David B, Richard G (2006) High-resolution spectral analysis of mixtures of complex exponentials modulated by polynomials. IEEE Trans Signal Process 54(4): 1341–1350
Belishev M (1997) Boundary Control method in reconstruction of manifolds and metrics (the BC method). Inverse Probl 13: R1–R45
Belishev MI (2001) Dynamical systems with boundary control: models and characterization of inverse data. Inverse Probl 17(4): 659–682
Costa O, Fragoso M, Marques R (2005) Discrete-time Markov jump linear systems. Springer, London
De Moor B, Vandewalle J (1987) A geometrical strategy for the identification of state space models of linear multivariable systems with singular value decomposition. In: Proceedings of the 3rd international symposium on applications of multivariable system techniques, April 13–15, Plymouth, UK, pp 59–69
Elaydi SN (1999) An introduction to difference equations, 2nd edn. Springer, New York
Eykhoff P (1974) System identification. Wiley, London
Hua Y, Sarkar TK (1990) Matrix pencil method for estimating parameters of exponentially damped/ undamped sinusoids in noise. IEEE Trans Acoust Speech Signal Process 38(5): 814–824
Hua, Y, Gershman, AB, Cheng, Q (eds) (2004) High-resolution and robust signal processing. Marcel Dekker, New York, Basel
Krabs W, Pickl SW (2003) Analysis, controllability and optimization of time-discrete systems and dynamical games. Springer, Berlin, Heidelberg
Marple SL (1987) Digital spectral analysis with applications. Prentice-Hall
Moonen M, De Moor B (1992) Comments on ‘State-space model identification with data correlation’. Int J Control 55(1): 257–259
Nagesha V, Kay S (1994) On frequency estimation with the IQML algorithm. IEEE Trans Signal Process 42(9): 2509–2513
Norton J (1986) An introduction to identification. Academic Press, London
Ottersten B, Viberg M, Kailath T (1991) Performance analysis of the total least-squares ESPRIT algorithm. IEEE Trans Signal Process 39(5): 1122–1135
de Prony BGR (1795) Essai éxperimental et analytique: sur les lois de la dilatabilité de fluides élastique et sur celles de la force expansive de la vapeur de l’alkool, à différentes températures. J de l’ École Polytech 1(22): 24–76
Roy R, Kailath T (1990) ESPRIT—estimation of signal parameters via rotational invariance techniques. Opt Eng 29(4): 296–313
Roy R, Paulraj A, Kailath T (1986) Multiple emitter location and signal parameter estimation. IEEE Trans Acoust Speech Signal Process 34(5): 1340–1342
Sarachik PE (1997) Principles of linear systems. Cambridge University Press
Sarkar TK, Wicks MC, Salazar-Palma M, Bonneau RJ (2003) Smart antennas. Wiley, Hoboken, New Jersey
Schmidt R (1986) Multiple emitter location and signal parameter estimation. IEEE Trans Antennas Propag 34(3): 276–280
Van Overschee P, De Moor B (1996) Subspace identification for linear systems: theory, implementation, applications. Kluwer Academic Publishers, Dordrecht, Netherlands
Van Overschee P, De Moor B, Suykens J (1991) Subspace algorithms for system identification and stochastic realization. In: Proceedings of conference on mathematical theory for networks and systems, MTNS, Mita Press, Kobe, Japan, pp 589–595
Verhaegen M, Dewilde P (1992) Subspace model identification, part I: the output-error state space model identification class of algorithms. Int J Control 56: 1187–1210
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Avdonin, S., Bulanova, A. Boundary Control approach to the spectral estimation problem: the case of multiple poles. Math. Control Signals Syst. 22, 245–265 (2011). https://doi.org/10.1007/s00498-010-0052-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00498-010-0052-5