Subspace Codes in PG(2N − 1, Q) | Combinatorica Skip to main content
Log in

Subspace Codes in PG(2N − 1, Q)

  • Original Paper
  • Published:
Combinatorica Aims and scope Submit manuscript

Abstract

An (r,M,2δ;k)q constant-dimension subspace code, δ > 1, is a collection C of (k − 1)-dimensional projective subspaces of PG(r − 1,q) such that every (kδ)-dimensional projective subspace of PG(r − 1,q) is contained in at most one member of C. Constant-dimension subspace codes gained recently lot of interest due to the work by Koetter and Kschischang [20], where they presented an application of such codes for error-correction in random network coding. Here a (2n,M,4;n)q constant-dimension subspace code is constructed, for every n ≥ 4. The size of our codes is considerably larger than all known constructions so far, whenever n > 4. When n = 4 a further improvement is provided by constructing an (8,M,4;4)q constant-dimension subspace code, with M = q12 + q2(q2 + 1)2(q2 + q + 1) + 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Beutelspacher: Partial spreads in finite projective spaces and partial designs, Math. Z. 145 (1975), 211–229.

    Article  MathSciNet  MATH  Google Scholar 

  2. J. M. N. Brown: Partitioning the complement of a simplex in PG(e,q d+1) into copies of PG(d,q), J. Geom. 33 (1988), 11–16.

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Cossidente and F. Pavese: On subspace codes, Des. Codes Cryptogr. DOI 10.1007/s10623-014-0018-6.

  4. A. Cossidente, G. Marino and F. Pavese: Non-linear maximum rank distance codes, Des. Codes Cryptogr. DOI 10.1007/s10623-015-0108-0.

  5. P. Delsarte: Bilinear forms over a finite field, with applications to coding theory, J. Combin. Theory Ser. A 25 (1978), 226–241.

    Article  MathSciNet  MATH  Google Scholar 

  6. R. H. Dye: Spreads and classes of maximal subgroups of GL(n,q), SL(n,q), PGL(n,q) and PSL(n,q), Ann. Mat. Pura Appl. 158 (1991), 33–50.

    Article  MathSciNet  MATH  Google Scholar 

  7. T. Etzion and N. Silberstein: Codes and Designs Related to Lifted MRD Codes, IEEE Trans. Inform. Theory 59 (2013), 1004–1017.

    Article  MathSciNet  MATH  Google Scholar 

  8. T. Etzion and N. Silberstein: Error-correcting codes in projective spaces via rankmetric codes and Ferrers diagrams, IEEE Trans. Inform. Theory 55 (2009), 2909–2919.

    Article  MathSciNet  MATH  Google Scholar 

  9. T. Etzion and A. Vardy: Error-correcting codes in projective space, IEEE Trans. Inform. Theory 57 (2011), 1165–1173.

    Article  MathSciNet  MATH  Google Scholar 

  10. E. M. Gabidulin: Theory of codes with maximum rank distance, Problems of Information Transmission 21 (1985), 1–12.

    MathSciNet  MATH  Google Scholar 

  11. M. Gadouleau and Z. Yan: Constant-rank codes and their connection to constant-dimension codes, IEEE Trans. Inform. Theory 56 (2010), 3207–3216.

    Article  MathSciNet  MATH  Google Scholar 

  12. N. Gill: Polar spaces and embeddings of classical groups, New Zealand J. Math. 36 (2007), 175–184.

    MathSciNet  MATH  Google Scholar 

  13. J. W. P. Hirschfeld: Finite projective spaces of three dimensions, Oxford Mathematical Monographs, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1985.

    MATH  Google Scholar 

  14. J. W. P. Hirschfeld and J. A. Thas: General Galois Geometries, Oxford Mathematical Monographs, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1991.

    MATH  Google Scholar 

  15. T. Honold, M. Kiermaier and S. Kurz: Optimal binary subspace codes of length 6, constant dimension 3 and minimum distance 4, Topics in finite fields 157–176, Contemp. Math. 632, Amer. Math. Soc., Providence, RI, 2015.

    Google Scholar 

  16. B. Huppert: Endliche Gruppen I, Die Grundlehren der Mathematischen Wissenschaften, Springer-Verlag, Berlin-New York, 1967.

    Google Scholar 

  17. A. Khaleghi, D. Silva and F. R. Kschischang: Subspace codes, Cryptography and coding 1–21, Lecture Notes in Comput. Sci., Springer, Berlin, 2009.

    Google Scholar 

  18. P. Kleidman and M. Liebeck: The subgroup structure of the finite classical groups, London Mathematical Society Lecture Note Series, vol. 129, Cambridge University Press, Cambridge, 1990.

    Book  MATH  Google Scholar 

  19. A. Klein, K. Metsch and L. Storme: Small maximal partial spreads in classical finite polar spaces, Adv. Geom. 10 (2010), 379–402.

    Article  MathSciNet  MATH  Google Scholar 

  20. R. Koetter and F. R. Kschischang: Coding for errors and erasures in random network coding, IEEE Trans. Inform. Theory 54 (2008), 3579–3591.

    Article  MathSciNet  MATH  Google Scholar 

  21. M. Lavrauw and G. Van de Voorde: Field reduction and linear sets in finite geometry, Topics in finite fields, 271–293, Contemp. Math., 632, Amer. Math. Soc., Providence, RI, 2015.

    Google Scholar 

  22. G. Lunardon, G. Marino, O. Polverino and R. Trombetti: Maximum scattered linear sets of pseudoregulus type and the Segre Variety Sn;n, J. Algebr. Comb. 39 (2014), 807–831.

    Article  MATH  Google Scholar 

  23. R. M. Roth: Maximum-rank array codes and their application to crisscross error correction, IEEE Trans. Inform. Theory 37 (1991), 328–336.

    Article  MathSciNet  MATH  Google Scholar 

  24. B. Segre: Teoria di Galois, fibrazioni proiettive e geometrie non desarguesiane, Ann. Mat. Pura Appl. 64 (1964), 1–76.

    Article  MathSciNet  MATH  Google Scholar 

  25. D. Silva, F. R. Kschischang and R. Koetter: A rank-metric approach to error control in random network coding, IEEE Trans. Inform. Theory, 54 (2008), 3951–3967.

    Article  MathSciNet  MATH  Google Scholar 

  26. A.-L. Trautmann and J. Rosenthal: New improvements on the echelon-Ferrers construction, in: Proc. of Int. Symp. on Math. Theory of Networks and Systems, 405–408, 2010.

    Google Scholar 

  27. S.-T. Xia and F.-W. Fu: Johnson type bounds on constant dimension codes, Des. Codes Cryptogr. 50 (2009), 163–172.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Cossidente.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cossidente, A., Pavese, F. Subspace Codes in PG(2N − 1, Q). Combinatorica 37, 1073–1095 (2017). https://doi.org/10.1007/s00493-016-3354-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00493-016-3354-5

Mathematics Subject Classification (2000)

Navigation