Abstract
We generalize the Yao–Yao partition theorem by showing that for any smooth measure in \(R^d\) there exist equipartitions using \((t+1)\hspace{0.49988pt}2^{d-1}\) convex regions such that every hyperplane misses the interior of at least t regions. In addition, we present tight bounds on the smallest number of hyperplanes whose union contains the boundary of an equipartition of a measure into n regions. We also present a simple proof of a Borsuk–Ulam type theorem for Stiefel manifolds that allows us to generalize the central transversal theorem and prove results bridging the Yao–Yao partition theorem and the central transversal theorem.
We’re sorry, something doesn't seem to be working properly.
Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.
References
Alon, N., Pach, J., Pinchasi, R., Radoičić, R., Sharir, M.: Crossing patterns of semi-algebraic sets. J. Combin. Theory Ser. A 111(2), 310–326 (2005)
Axelrod-Freed, I., Soberón, P.: Bisections of mass assignments using flags of affine spaces. Discrete Comput. Geom. (2022). https://doi.org/10.1007/s00454-022-00465-x
Bárány, I.: Borsuk’s theorem through complementary pivoting. Math. Program. 18(1), 84–88 (1980)
Bárány, I., Hubard, A., Jerónimo, J.: Slicing convex sets and measures by a hyperplane. Discrete Comput. Geom. 39(1–3), 67–75 (2008)
Barba, L., Pilz, A., Schnider, P.: Sharing a pizza: bisecting masses with two cuts (2019). arXiv:1904.02502
Blagojević, P.V.M., Frick, F., Haase, A., Ziegler, G.M.: Topology of the Grünbaum-Hadwiger-Ramos hyperplane mass partition problem. Trans. Am. Math. Soc. 370(10), 6795–6824 (2018)
Blagojević, P.V.M., Soberón, P.: Thieves can make sandwiches. Bull. Lond. Math. Soc. 50(1), 108–123 (2018)
Buck, R.C., Buck, E.F.: Equipartition of convex sets. Math. Mag. 22, 195–198 (1949)
Chan, Y.H., Chen, Sh., Frick, F., Hull, J.T.: Theorems for products of spheres and Stiefel manifolds revisited. Topol. Methods Nonlinear Anal. 55(2), 553–564 (2020)
Dol’nikov, V.L.: A generalization of the ham sandwich theorem. Math. Notes 52(2), 771–779 (1992)
Fadell, E., Husseini, S.: An ideal-valued cohomological index theory with applications to Borsuk–Ulam and Bourgin–Yang theorems. Ergodic Theory Dyn. Syst. 8(Charles Conley Memorial Issue), 73–85 (1988)
Fradelizi, M., Hubard, A., Meyer, M., Roldán-Pensado, E., Zvavitch, A.: Equipartitions and Mahler volumes of symmetric convex bodies. Am. J. Math. 144(5), 1201–1219 (2022)
Grünbaum, B.: Partitions of mass-distributions and of convex bodies by hyperplanes. Pac. J. Math. 10, 1257–1261 (1960)
Guillemin, V., Pollack, A.: Differential Topology, vol. 370. AMS Chelsea Publishing, American Mathematical Society, Providence (2010)
Hadwiger, H.: Simultane Vierteilung zweier Körper. Arch. Math. (Basel) 17(3), 274–278 (1966)
Hubard, A., Karasev, R.: Bisecting measures with hyperplane arrangements. Math. Proc. Camb. Philos. Soc. 169(3), 639–647 (2020)
Karasev, R.N., Roldán-Pensado, E., Soberón, P.: Measure partitions using hyperplanes with fixed directions. Isr. J. Math. 212(2), 705–728 (2016)
Lehec, J.: On the Yao-Yao partition theorem. Arch. Math. (Basel) 92(4), 366–376 (2009)
de Longueville, M., Živaljević, R.T.: Splitting multidimensional necklaces. Adv. Math. 218(3), 926–939 (2008)
Matoušek, J.: Using the Borsuk-Ulam Theorem. Universitext. Springer, Berlin (2003)
Musin, O.R.: Borsuk-Ulam type theorems for manifolds. Proc. Am. Math. Soc. 140(7), 2551–2560 (2012)
Ramos, E.A.: Equipartition of mass distributions by hyperplanes. Discrete Comput. Geom. 15(2), 147–167 (1996)
Roldán-Pensado, E., Soberón, P.: An extension of a theorem of Yao and Yao. Discrete Comput. Geom. 51(2), 285–299 (2014)
Roldán-Pensado, E., Soberón, P.: A survey of mass partitions. Bull. Am. Math. Soc. 59(2), 227–267 (2022)
Soberón, P., Takahashi, Y.: Lifting methods in mass partition problems. Int. Math. Res. Not. (2022). https://doi.org/10.1093/imrn/rnac224
Thom, R.: Quelques propriétés globales des variétés différentiables. Comment. Math. Helv. 28, 17–86 (1954)
Yao, A.C., Yao, F.F.: A general approach to d-dimensional geometric queries. In: 17th Annual ACM Symposium on Theory of Computing (Providence 1985), pp. 163–168. ACM, New York (1985)
Živaljević, R.T.: Topological methods in discrete geometry. In: Handbook of Discrete and Computational Geometry, pp. 551–580. CRC Press, Boca Raton (2017)
Živaljević, R.T., Vrećica, S.T.: An extension of the ham sandwich theorem. Bull. Lond. Math. Soc. 22(2), 183–186 (1990)
Notatki z topologii. Mathesis Polska 11, 26–28 (1938)
Acknowledgements
The authors thank the two anonymous referees whose comments significantly improved this manuscript.
Author information
Authors and Affiliations
Corresponding author
Additional information
Editor in Charge: Csaba D. Tóth
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Soberón’s research is supported by NSF Grant DMS 2054419 and a PSC-CUNY TRADB52 award.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Manta, M.N., Soberón, P. Generalizations of the Yao–Yao Partition Theorem and Central Transversal Theorems. Discrete Comput Geom 71, 1381–1402 (2024). https://doi.org/10.1007/s00454-023-00536-7
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00454-023-00536-7