Generalizations of the Yao–Yao Partition Theorem and Central Transversal Theorems | Discrete & Computational Geometry Skip to main content
Log in

Generalizations of the Yao–Yao Partition Theorem and Central Transversal Theorems

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

We generalize the Yao–Yao partition theorem by showing that for any smooth measure in \(R^d\) there exist equipartitions using \((t+1)\hspace{0.49988pt}2^{d-1}\) convex regions such that every hyperplane misses the interior of at least t regions. In addition, we present tight bounds on the smallest number of hyperplanes whose union contains the boundary of an equipartition of a measure into n regions. We also present a simple proof of a Borsuk–Ulam type theorem for Stiefel manifolds that allows us to generalize the central transversal theorem and prove results bridging the Yao–Yao partition theorem and the central transversal theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Alon, N., Pach, J., Pinchasi, R., Radoičić, R., Sharir, M.: Crossing patterns of semi-algebraic sets. J. Combin. Theory Ser. A 111(2), 310–326 (2005)

  2. Axelrod-Freed, I., Soberón, P.: Bisections of mass assignments using flags of affine spaces. Discrete Comput. Geom. (2022). https://doi.org/10.1007/s00454-022-00465-x

    Article  Google Scholar 

  3. Bárány, I.: Borsuk’s theorem through complementary pivoting. Math. Program. 18(1), 84–88 (1980)

    Article  MathSciNet  Google Scholar 

  4. Bárány, I., Hubard, A., Jerónimo, J.: Slicing convex sets and measures by a hyperplane. Discrete Comput. Geom. 39(1–3), 67–75 (2008)

    Article  MathSciNet  Google Scholar 

  5. Barba, L., Pilz, A., Schnider, P.: Sharing a pizza: bisecting masses with two cuts (2019). arXiv:1904.02502

  6. Blagojević, P.V.M., Frick, F., Haase, A., Ziegler, G.M.: Topology of the Grünbaum-Hadwiger-Ramos hyperplane mass partition problem. Trans. Am. Math. Soc. 370(10), 6795–6824 (2018)

    Article  Google Scholar 

  7. Blagojević, P.V.M., Soberón, P.: Thieves can make sandwiches. Bull. Lond. Math. Soc. 50(1), 108–123 (2018)

    Article  MathSciNet  Google Scholar 

  8. Buck, R.C., Buck, E.F.: Equipartition of convex sets. Math. Mag. 22, 195–198 (1949)

    Article  MathSciNet  Google Scholar 

  9. Chan, Y.H., Chen, Sh., Frick, F., Hull, J.T.: Theorems for products of spheres and Stiefel manifolds revisited. Topol. Methods Nonlinear Anal. 55(2), 553–564 (2020)

    MathSciNet  Google Scholar 

  10. Dol’nikov, V.L.: A generalization of the ham sandwich theorem. Math. Notes 52(2), 771–779 (1992)

    Article  MathSciNet  Google Scholar 

  11. Fadell, E., Husseini, S.: An ideal-valued cohomological index theory with applications to Borsuk–Ulam and Bourgin–Yang theorems. Ergodic Theory Dyn. Syst. 8(Charles Conley Memorial Issue), 73–85 (1988)

  12. Fradelizi, M., Hubard, A., Meyer, M., Roldán-Pensado, E., Zvavitch, A.: Equipartitions and Mahler volumes of symmetric convex bodies. Am. J. Math. 144(5), 1201–1219 (2022)

    Article  MathSciNet  Google Scholar 

  13. Grünbaum, B.: Partitions of mass-distributions and of convex bodies by hyperplanes. Pac. J. Math. 10, 1257–1261 (1960)

    Article  MathSciNet  Google Scholar 

  14. Guillemin, V., Pollack, A.: Differential Topology, vol. 370. AMS Chelsea Publishing, American Mathematical Society, Providence (2010)

    Google Scholar 

  15. Hadwiger, H.: Simultane Vierteilung zweier Körper. Arch. Math. (Basel) 17(3), 274–278 (1966)

    Article  MathSciNet  Google Scholar 

  16. Hubard, A., Karasev, R.: Bisecting measures with hyperplane arrangements. Math. Proc. Camb. Philos. Soc. 169(3), 639–647 (2020)

    Article  MathSciNet  Google Scholar 

  17. Karasev, R.N., Roldán-Pensado, E., Soberón, P.: Measure partitions using hyperplanes with fixed directions. Isr. J. Math. 212(2), 705–728 (2016)

    Article  MathSciNet  Google Scholar 

  18. Lehec, J.: On the Yao-Yao partition theorem. Arch. Math. (Basel) 92(4), 366–376 (2009)

    Article  MathSciNet  Google Scholar 

  19. de Longueville, M., Živaljević, R.T.: Splitting multidimensional necklaces. Adv. Math. 218(3), 926–939 (2008)

    Article  MathSciNet  Google Scholar 

  20. Matoušek, J.: Using the Borsuk-Ulam Theorem. Universitext. Springer, Berlin (2003)

    Google Scholar 

  21. Musin, O.R.: Borsuk-Ulam type theorems for manifolds. Proc. Am. Math. Soc. 140(7), 2551–2560 (2012)

    Article  MathSciNet  Google Scholar 

  22. Ramos, E.A.: Equipartition of mass distributions by hyperplanes. Discrete Comput. Geom. 15(2), 147–167 (1996)

    Article  MathSciNet  Google Scholar 

  23. Roldán-Pensado, E., Soberón, P.: An extension of a theorem of Yao and Yao. Discrete Comput. Geom. 51(2), 285–299 (2014)

    Article  MathSciNet  Google Scholar 

  24. Roldán-Pensado, E., Soberón, P.: A survey of mass partitions. Bull. Am. Math. Soc. 59(2), 227–267 (2022)

    Article  MathSciNet  Google Scholar 

  25. Soberón, P., Takahashi, Y.: Lifting methods in mass partition problems. Int. Math. Res. Not. (2022). https://doi.org/10.1093/imrn/rnac224

    Article  Google Scholar 

  26. Thom, R.: Quelques propriétés globales des variétés différentiables. Comment. Math. Helv. 28, 17–86 (1954)

    Article  MathSciNet  Google Scholar 

  27. Yao, A.C., Yao, F.F.: A general approach to d-dimensional geometric queries. In: 17th Annual ACM Symposium on Theory of Computing (Providence 1985), pp. 163–168. ACM, New York (1985)

  28. Živaljević, R.T.: Topological methods in discrete geometry. In: Handbook of Discrete and Computational Geometry, pp. 551–580. CRC Press, Boca Raton (2017)

  29. Živaljević, R.T., Vrećica, S.T.: An extension of the ham sandwich theorem. Bull. Lond. Math. Soc. 22(2), 183–186 (1990)

    Article  MathSciNet  Google Scholar 

  30. Notatki z topologii. Mathesis Polska 11, 26–28 (1938)

Download references

Acknowledgements

The authors thank the two anonymous referees whose comments significantly improved this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Soberón.

Additional information

Editor in Charge: Csaba D. Tóth

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Soberón’s research is supported by NSF Grant DMS 2054419 and a PSC-CUNY TRADB52 award.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manta, M.N., Soberón, P. Generalizations of the Yao–Yao Partition Theorem and Central Transversal Theorems. Discrete Comput Geom 71, 1381–1402 (2024). https://doi.org/10.1007/s00454-023-00536-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-023-00536-7

Keywords

Navigation