On Fast Johnson–Lindenstrauss Embeddings of Compact Submanifolds of $$\mathbbm {R}^N$$ with Boundary | Discrete & Computational Geometry
Skip to main content

On Fast Johnson–Lindenstrauss Embeddings of Compact Submanifolds of \(\mathbbm {R}^N\) with Boundary

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

Let \({\mathcal {M}}\) be a smooth d-dimensional submanifold of \(\mathbbm {R}^N\) with boundary that’s equipped with the Euclidean (chordal) metric, and choose \(m \le N\). In this paper we consider the probability that a random matrix \(A\in {\mathbbm {R}}^{m\times N}\) will serve as a bi-Lipschitz function \(A:{\mathcal {M}} \rightarrow \mathbbm {R}^m\) with bi-Lipschitz constants close to one for three different types of distributions on the \(m\times N\) matrices A, including two whose realizations are guaranteed to have fast matrix-vector multiplies. In doing so we generalize prior randomized metric space embedding results of this type for submanifolds of \(\mathbbm {R}^N\) by allowing for the presence of boundary while also retaining, and in some cases improving, prior lower bounds on the achievable embedding dimensions m for which one can expect small distortion with high probability. In particular, motivated by recent modewise embedding constructions for tensor data, herein we present a new class of highly structured distributions on matrices which outperform prior structured matrix distributions for embedding sufficiently low-dimensional submanifolds of \(\mathbbm {R}^N\) (with \(d\lesssim \sqrt{N}\)) with respect to both achievable embedding dimension, and computationally efficient realizations. As a consequence we are able to present, for example, a general new class of Johnson–Lindenstrauss embedding matrices for \({\mathcal {O}}(\log ^c N)\)-dimensional submanifolds of \(\mathbbm {R}^N\) which enjoy \({\mathcal {O}}(N \log (\log N))\)-time matrix vector multiplications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Notes

  1. Common choices for U include discrete cosine transform and Hadamard matrices. In addition, one can also see that choosing U to be a complex-valued DFT matrix outright will also work as a consequence of Euler’s formula.

  2. Note that one can prove similar results for one dimensional manifolds and for manifolds with infinite reach using the results herein. However, they require different definitions of \(\alpha _{{\mathcal {M}}}\) and \(\beta _{{\mathcal {M}}}\) below. See Theorem 4.4 and Proposition 4.3 for details on these special cases.

  3. One can show that \(\beta _{{\mathcal {M}}}\) is guaranteed to be \(> (d-1) \cdot 41^{2d-3}\) in this setting so that \(m \ge c'' d\) always holds in keeping with our intuition. See, e.g., Proposition 4.2 and (36)–(37) below for additional related discussion.

  4. We believe that this is at least partially an artifact of the proof technique which ultimately depends on establishing the Restricted Isometry Property for a subsampled orthonormal basis system.

  5. The condition on s here is highly pessimistic. See Remark 3.1 for additional discussion about other admissible upper bounds which scale better in s.

  6. For infinite reach, see Proposition 4.3.

  7. Note that \(c_1, c_2, c_3\) depend on the sub-Gaussian norms of the rows of B in Lemma A.2 through an application of Theorem 2.1. However, after the distributions of B’s entries, X, are fixed these norms are also both fixed and independent of the final length of the rows (see, e.g., [46, Lem. 3.4.2 and Thm. 9.1.1] in connection with the use of Theorem 2.1 in the proof of Lemma A.2).

References

  1. Aamari, E., Kim, J., Chazal, F., Michel, B., Rinaldo, A., Wasserman, L.: Estimating the reach of a manifold. Electron. J. Stat. 13(1), 1359–1399 (2019)

    Article  MathSciNet  Google Scholar 

  2. Achlioptas, D.: Database-friendly random projections: Johnson–Lindenstrauss with binary coins. J. Comput. Syst. Sci. 66(4), 671–687 (2003)

  3. Ailon, N., Chazelle, B.: Approximate nearest neighbors and the fast Johnson–Lindenstrauss transform. In: 38th Annual ACM Symposium on Theory of Computing (Seattle 2006), pp. 557–563. ACM, New York (2006)

  4. Ailon, N., Liberty, E.: Fast dimension reduction using Rademacher series on dual BCH codes. Discrete Comput. Geom. 42(4), 615–630 (2009)

    Article  MathSciNet  Google Scholar 

  5. Alexander, R., Alexander, S.: Geodesics in Riemannian manifolds-with-boundary. Indiana Univ. Math. J. 30(4), 481–488 (1981)

    Article  MathSciNet  Google Scholar 

  6. Alexander, S.B., Berg, I.D., Bishop, R.L.: The Riemannian obstacle problem. Illinois J. Math. 31(1), 167–184 (1987)

    Article  MathSciNet  Google Scholar 

  7. Bamberger, S., Krahmer, F., Ward, R.: Johnson–Lindenstrauss embeddings with Kronecker structure (2021). arXiv:2106.13349

  8. Baraniuk, R., Davenport, M., DeVore, R., Wakin, M.: A simple proof of the restricted isometry property for random matrices. Constr. Approx. 28(3), 253–263 (2008)

    Article  MathSciNet  Google Scholar 

  9. Baraniuk, R.G., Wakin, M.B.: Random projections of smooth manifolds. Found. Comput. Math. 9(1), 51–77 (2009)

  10. Boissonnat, J.-D., Lieutier, A., Wintraecken, M.: The reach, metric distortion, geodesic convexity and the variation of tangent spaces. J. Appl. Comput. Topol. 3(1–2), 29–58 (2019)

  11. Borsuk, K.: Sur la courbure totale des courbes fermées. Ann. Soc. Polon. Math. 20, 251–265 (1947)

    MathSciNet  Google Scholar 

  12. Böröczky, K., Jr.: Finite Packing and Covering. Cambridge Tracts in Mathematics, vol. 154. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  13. Brugiapaglia, S., Dirksen, S., Jung, H.Ch., Rauhut, H.: Sparse recovery in bounded Riesz systems with applications to numerical methods for PDEs. Appl. Comput. Harmon. Anal. 53, 231–269 (2021)

  14. Chen, M., Silva, J., Paisley, J., Wang, Ch., Dunson, D., Carin, L.: Compressive sensing on manifolds using a nonparametric mixture of factor analyzers: algorithm and performance bounds. IEEE Trans. Signal Process. 58(12), 6140–6155 (2010)

    Article  ADS  MathSciNet  PubMed  PubMed Central  Google Scholar 

  15. Clarkson, K.L.: Tighter bounds for random projections of manifolds. In: 24th Annual Symposium on Computational Geometry (College Park 2008), pp. 39–48. ACM, New York (2008)

  16. Dasgupta, S., Gupta, A.: An elementary proof of a theorem of Johnson and Lindenstrauss. Random Struct. Algorithms 22(1), 60–65 (2003)

    Article  MathSciNet  Google Scholar 

  17. Davenport, M.A., Duarte, M.F., Wakin, M.B., Laska, J.N., Takhar, D., Kelly, K.F., Baraniuk, R.G.: The smashed filter for compressive classification and target recognition. In: Computational Imaging V (San Jose 2007). Proceedings of SPIE-IS &T Electronic Imaging, vol. 6498, # 64980H. International Society for Optical Engineering, Bellingham (2007)

  18. Dirksen, S.: Dimensionality reduction with subgaussian matrices: a unified theory. Found. Comput. Math. 16(5), 1367–1396 (2016)

    Article  MathSciNet  Google Scholar 

  19. Dirksen, S., Iwen, M., Krause-Solberg, S., Maly, J.: Robust one-bit compressed sensing with manifold data. In: 13th International Conference on Sampling Theory and Applications (Bordeaux 2019). IEEE (2019)

  20. Eftekhari, A., Wakin, M.B.: New analysis of manifold embeddings and signal recovery from compressive measurements. Appl. Comput. Harmon. Anal. 39(1), 67–109 (2015)

    Article  MathSciNet  Google Scholar 

  21. Eftekhari, A., Wakin, M.B.: What happens to a manifold under a bi-Lipschitz map? Discrete Comput. Geom. 57(3), 641–673 (2017)

    Article  MathSciNet  Google Scholar 

  22. Federer, H.: Curvature measures. Trans. Am. Math. Soc. 93(3), 418–491 (1959)

    Article  MathSciNet  Google Scholar 

  23. Fenchel, W.: On the differential geometry of closed space curves. Bull. Am. Math. Soc. 57, 44–54 (1951)

    Article  MathSciNet  Google Scholar 

  24. Foucart, S., Rauhut, H.: A Mathematical Introduction to Compressive Sensing. Applied and Numerical Harmonic Analysis. Birkhäuser, New York (2013)

  25. Gallot, S., Hulin, D., Lafontaine, J.: Riemannian Geometry. Universitext. Springer, Berlin (1990)

  26. Ghomi, M., Tabachnikov, S.: Totally skew embeddings of manifolds. Math. Z. 258(3), 499–512 (2008)

    Article  MathSciNet  Google Scholar 

  27. Hegde, Ch., Wakin, M., Baraniuk, R.: Random projections for manifold learning. In: Advances in Neural Information Processing Systems (Vancouver 2006), vol. 20, pp. 641–648. Curran Associates, Red Hook (2008)

  28. Hyun, C.M., Baek, S.H., Lee, M., Lee, S.M., Seo, J.K.: Deep learning-based solvability of underdetermined inverse problems in medical imaging. Med. Image Anal. 69, # 101967 (2021)

  29. Iwen, M.: A mathematical introduction to fast and memory efficient algorithms for big data. Publicly available course notes, Michigan State University (2020). https://math.msu.edu/~iwenmark/Notes_Fall2020_Iwen_Classes.pdf

  30. Iwen, M.A., Krahmer, F., Krause-Solberg, S., Maly, J.: On recovery guarantees for one-bit compressed sensing on manifolds. Discrete Comput. Geom. 65(4), 953–998 (2021)

  31. Iwen, M.A., Lybrand, E., Nelson, A.A., Saab, R.: New algorithms and improved guarantees for one-bit compressed sensing on manifolds. In: 13th International Conference on Sampling Theory and Applications (Bordeaux 2019). IEEE (2019)

  32. Iwen, M.A., Maggioni, M.: Approximation of points on low-dimensional manifolds via random linear projections. Inf. Inference 2(1), 1–31 (2013)

    Article  MathSciNet  Google Scholar 

  33. Iwen, M.A., Needell, D., Rebrova, E., Zare, A.: Lower memory oblivious (tensor) subspace embeddings with fewer random bits: modewise methods for least squares. SIAM J. Matrix Anal. Appl. 42(1), 376–416 (2021)

    Article  MathSciNet  Google Scholar 

  34. Iwen, M., Tavakoli, A., Schmidt, B.: Lower bounds on the low-distortion embedding dimension of submanifolds of \({\mathbb{R}}^N\) (2021). arXiv:2105.13512

  35. Krahmer, F., Ward, R.: New and improved Johnson–Lindenstrauss embeddings via the restricted isometry property. SIAM J. Math. Anal. 43(3), 1269–1281 (2011)

    Article  MathSciNet  Google Scholar 

  36. Lahiri, S., Gao, P., Ganguli, S.: Random projections of random manifolds (2016). arXiv:1607.04331

  37. Lashof, R., Smale, S.: On the immersion of manifolds in euclidean space. Ann. Math. 68, 562–583 (1958)

    Article  MathSciNet  Google Scholar 

  38. Li, S.: Concise formulas for the area and volume of a hyperspherical cap. Asian J. Math. Stat. 4(1), 66–70 (2011)

    Article  MathSciNet  Google Scholar 

  39. Johnson, W.B., Lindenstrauss, J.: Extensions of Lipschitz mappings into a Hilbert space. In: Conference in Modern Analysis and Probability (New Haven 1982). Contemp. Math., vol. 26, pp. 189–206. American Mathematical Society, Providence (1984)

  40. Niyogi, P., Smale, S., Weinberger, Sh.: Finding the homology of submanifolds with high confidence from random samples. Discrete Comput. Geom. 39(1–3), 419–441 (2008)

    Article  MathSciNet  Google Scholar 

  41. O’Neill, B.: Semi-Riemannian Geometry. Pure and Applied Mathematics, vol. 103. Academic Press, New York (1983)

    Google Scholar 

  42. Oymak, S., Recht, B., Soltanolkotabi, M.: Isometric sketching of any set via the restricted isometry property. Inf. Inference 7(4), 707–726 (2018)

    Article  MathSciNet  Google Scholar 

  43. Pohl, W.F.: Some integral formulas for space curves and their generalization. Am. J. Math. 90(4), 1321–1345 (1968)

    Article  MathSciNet  Google Scholar 

  44. Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  45. Thäle, Ch.: 50 years sets with positive reach–a survey. Surv. Math. Appl. 3, 123–165 (2008)

    MathSciNet  Google Scholar 

  46. Vershynin, R.: High-Dimensional Probability. Cambridge Series in Statistical and Probabilistic Mathematics, vol. 47. Cambridge University Press, Cambridge (2018)

    Google Scholar 

  47. White, J.H.: Self-linking and the Gauss integral in higher dimensions. Am. J. Math. 91(3), 693–728 (1969)

    Article  MathSciNet  Google Scholar 

  48. White, J.H.: Self-linking and the directed secant span of a differentiable manifold. J. Differ. Geom. 5, 357–369 (1971)

    Article  MathSciNet  Google Scholar 

  49. Yap, H.L., Wakin, M.B., Rozell, Ch.J.: Stable manifold embeddings with structured random matrices. IEEE J. Select. Top. Signal Process. 7(4), 720–730 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arman Tavakoli.

Additional information

Editor in Charge: Kenneth Clarkson

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

M. A. Iwen: Supported in part by NSF DMS 1912706 and by NSF DMS 2106472. B. Schmidt: Supported in part by a Simons Collaboration Grant. A. Tavakoli: Supported in part by NSF DMS 1912706, and by an MSU College of Natural Science Dissertation Completion Fellowship

Appendix A: The Proof of Theorem 3.4

Appendix A: The Proof of Theorem 3.4

The following lemma describes properties that the matrices A and B can have in order to guarantee that E in (1) will approximately preserve the norms of all elements of an arbitrary bounded set \(S \subset \mathbbm {R}^N\). Though we will present the proof in general, we will be primarily interested in the case where S contains all unit norm s-sparse vectors so that

$$\begin{aligned} S = U\left( \bigcup _{\begin{array}{c} S' \subset [N]\\ |S'| = s \end{array}}{\text {span}}{ \bigl (\{ \textbf{e}_j\}_{j \in S'} \bigr )} \right) . \end{aligned}$$
(41)

Lemma A.1

Let \(\epsilon \in (0,{1}/{3})\), \(S \subset \mathbbm {R}^N\), and \(A \in \mathbbm {R}^{m_1 \times m_1^2}\), \(B \in \mathbbm {R}^{m_2 \times N/m_1}\), \(C \in \mathbbm {R}^{N/m_1 \times N}\), and \(E \in \mathbbm {R}^{m_2 \times N}\) be as above in (1) with \(m_1 \ge m_2\). Furthermore, let \(a_E := \max {\bigl \{ \sup \nolimits _{\textbf{x} \in U(S - S)} \Vert E \textbf{x} \Vert _2,1 \bigr \}}\), \({{\mathcal {C}}}_{\delta } \subset S\) be a finite \(\delta \)-cover of S for \(\delta \le \epsilon /a_E\), and suppose that

  1. (a)

    A is an \(\epsilon \)-JL map of \(P_j {{\mathcal {C}}}_{\delta }\) into \(\mathbbm {R}^{m_1}\) for all \(j \in [N/m_1^2]_0\), and that

  2. (b)

    \(B/{\sqrt{m_2}}\) is an \(\epsilon \)-JL map of \(C {{\mathcal {C}}}_{\delta }\) into \(\mathbbm {R}^{m_2}\).

Then,

$$\begin{aligned} (1 - 2\epsilon ) \Vert \textbf{x} \Vert _2 - \epsilon \left( 1+\sqrt{\frac{5}{3}}\,\right) \le \Vert E \textbf{x} \Vert _2 \le \biggl (1 + \frac{3\epsilon }{2}\biggr ) \Vert \textbf{x} \Vert _2 + \epsilon (1+\sqrt{2}) \end{aligned}$$
(42)

will hold for all \(\textbf{x} \in S\). If, in addition, S is a subset of the unit sphere such that \(\Vert \textbf{x} \Vert _2 = 1\) for all \(\textbf{x} \in S\), then \(E = BC/{\sqrt{m_2}} \in \mathbbm {R}^{m_2 \times N}\) will also be a \(14 \epsilon \)-JL map of S into \(\mathbbm {R}^{m_2}\).

Proof

By Lemma 3.1 we see that E will be a \(3\epsilon \)-JL map of \({{\mathcal {C}}}_{\delta }\) into \(\mathbbm {R}^{m_2}\) since

$$\begin{aligned} \begin{aligned} (1-2\epsilon ) \Vert \textbf{x} \Vert _2^2&\le (1-\epsilon )^2 \Vert \textbf{x} \Vert _2^2 \le (1-\epsilon ) \Vert C \textbf{x} \Vert _2^2\le \Vert E \textbf{x}\Vert ^2_2\\&\le (1+\epsilon ) \Vert C \textbf{x} \Vert _2^2 \le (1+\epsilon )^2 \Vert \textbf{x} \Vert _2^2 \le (1 + 3 \epsilon ) \Vert \textbf{x} \Vert _2^2 \end{aligned} \end{aligned}$$
(43)

will hold for all \(\textbf{x} \in {{\mathcal {C}}}_{\delta }\). Continuing, let \(\textbf{y} \in S\) and choose \(\textbf{x} \in {{\mathcal {C}}}_{\delta } \subset S\) be such that \(\Vert \textbf{y} - \textbf{x} \Vert _2 \le \delta \). Using (43) we have that

$$\begin{aligned} \Vert E \textbf{y} \Vert _2{} & {} \le \Vert E\textbf{x} \Vert _2 + \Vert E(\textbf{y} - \textbf{x}) \Vert _2 \le \sqrt{1 + 3\epsilon } \,\Vert \textbf{x} \Vert _2 + a_E \Vert \textbf{y} - \textbf{x} \Vert _2 \\{} & {} \le \sqrt{1 + 3\epsilon } \,\Vert \textbf{y} \Vert _2 + \delta \sqrt{1 + 3\epsilon } + a_E \delta \le \biggl (1 + \frac{3\epsilon }{2}\biggr )\Vert \textbf{y} \Vert _2 + \epsilon (1+\sqrt{2}).\nonumber \end{aligned}$$
(44)

Similarly, we will also have that

$$\begin{aligned} \Vert E \textbf{y} \Vert _2\ge & {} \Vert E\textbf{x} \Vert _2 - \Vert E(\textbf{y} - \textbf{x}) \Vert _2 \ge \sqrt{1 - 2\epsilon } \,\Vert \textbf{x} \Vert _2 - a_E \Vert \textbf{y} - \textbf{x} \Vert _2\\\ge & {} \sqrt{1 - 2\epsilon }\,\Vert \textbf{y} \Vert _2 - \delta \sqrt{1 + 2\epsilon } - a_E \delta \ge (1 - 2\epsilon ) \Vert \textbf{y} \Vert _2 - \epsilon \left( 1+\sqrt{\frac{5}{3}}\,\right) .\nonumber \end{aligned}$$
(45)

Combining (44) and (45) gives us (42). Finally, if all the elements of S are unit norm, then we can see from (44) and (45) that

$$\begin{aligned} (1-5 \epsilon ) \Vert \textbf{y} \Vert _2 \le \Vert E \textbf{y} \Vert _2 \le (1+4 \epsilon ) \Vert \textbf{y} \Vert _2 \end{aligned}$$

will hold for all \(\textbf{y} \in S\). Squaring throughout now proves the remaining claim. \(\square \)

Note that Lemma A.1 requires the matrix \(B/\sqrt{m_2}\) to be an \(\epsilon \)-JL map of a finite subset \(S_C\) of C(S) (see assumption (b)). In addition, we need to have some way of bounding \(a_E = \sup \nolimits _{\textbf{x} \in U(S - S)} \Vert E \textbf{x} \Vert _2\) from above in order to safely upper bound the cardinality of \(S_C = C(C_\delta )\) in the first place. The next lemma addresses both of these needs for sub-Gaussian matrices B.

Lemma A.2

Let \(\epsilon , p \in (0, {1}/{3})\), \(S \subset \mathbbm {R}^N\), and \(S_C \subset C(S) \subset \mathbbm {R}^{N/m_1}\) be finite. Furthermore, suppose that \(B \in \mathbbm {R}^{m_2 \times N/m_1}\) in the definition of E in (1) has \(m_2 \ge c_1 \epsilon ^{-2} \ln (|S_C|/p)\) independent, isotropic, and sub-Gaussian rows. Then, both

  1. (i)

    \(B/{\sqrt{m_2}}\) will be an \(\epsilon \)-JL map of \(S_C\) into \(\mathbbm {R}^{m_2}\), and

  2. (ii)
    $$\begin{aligned} \sup _{\textbf{x} \in U(S- S)} \Vert E \textbf{x} \Vert _2\le & {} c_2\Vert A\Vert \left( \frac{w(U(S-S)) + \sqrt{\ln ({1}/{p})}}{\sqrt{m_2}}+1\right) \\\le & {} c_3 \biggl (\frac{\Vert A\Vert }{\sqrt{m_2}} \biggr )\left( \sqrt{N} + \sqrt{\ln \frac{1}{p}}\,\right) \end{aligned}$$

will hold simultaneously with probability at least \(1-p\). Here \(c_1, c_2, c_3 \in \mathbbm {R}^+\) are constants that only depend on the distributions of the rows of B (i.e., they are absolute constants once distributions for the rows of B are fixed).

Proof

To prove that both conclusions (i) and (ii) above hold simultaneously with probability at least \(1-p\), we will prove that each one holds separately with probability at least \(1 - p/2\). The desired result will then follow from the union bound.

To establish conclusion (i) with probability at least \(1-p/2\) one may simply appeal, e.g., to the proof of [24, Lem. 9.35]. Toward establishing conclusion (ii) we first note that

(46)

Continuing, we have

$$\begin{aligned} \sup _{\textbf{x} \in U(S - S)} \Vert E \textbf{x} \Vert _2&= \frac{1}{\sqrt{m_2}} \sup _{\textbf{x} \in C(U(S - S))} \Vert B \textbf{x} \Vert _2\\&\le \frac{1}{\sqrt{m_2}} \sup _{\textbf{x} \in C(U(S - S))} \bigl | \Vert B \textbf{x} \Vert _2 - \sqrt{m_2} \Vert \textbf{x} \Vert _2 \bigr | + \sqrt{m_2}\, \Vert \textbf{x} \Vert _2\\&\le \frac{1}{\sqrt{m_2}} \sup _{\textbf{x} \in C(U(S - S))} \bigl | \Vert B \textbf{x} \Vert _2 - \sqrt{m_2}\Vert \textbf{x} \Vert _2 \bigr | + \sup _{\textbf{x} \in U(S - S)} \Vert C \textbf{x} \Vert _2. \end{aligned}$$

Now appealing to Theorem 2.1 and (46) we can see that

$$\begin{aligned} \sup _{\textbf{x} \in U(S - S)} \Vert E \textbf{x} \Vert _2&\le \frac{{\tilde{c}}\bigl ( w(C(U(S-S))) + \sqrt{\ln ({4}/{p})}\,\sup _{\textbf{x} \in C(U(S-S))} \Vert \textbf{x} \Vert _2 \bigr )}{\sqrt{m_2}} + \Vert C\Vert \\&\le \frac{{\tilde{c}} \bigl ( w(C(U(S-S))) + \sqrt{\ln ({4}/{p})} \cdot \Vert A\Vert \bigr )}{\sqrt{m_2}} + \Vert A\Vert \end{aligned}$$

will hold with probability at least \(1 - p/2\), where \({\tilde{c}} \in \mathbbm {R}^+\) is a constant that only depends on the distributions of the rows of B. Finally, using properties of Gaussian width (see, e.g., [46, Exer. 7.5.4]) the last inequality can be simplified further to

Using (46) one last time and simplifying using that \(\ln (1/p) \ge 1\) now yields the first inequality in (ii) above.

To obtain a different version of the second inequality in (ii) one might be tempted to use, e.g., [46, Thm. 4.4.5] and then repeat analogous simplifications to those just performed above. Indeed, doing so provides a slight better bound on \(\sup \nolimits _{\textbf{x} \in U(S - S)} \Vert E \textbf{x} \Vert _2 \) than the second inequality in (ii) does in the end. However, for our purposes the second inequality in (ii) suffices and also follows automatically from what we have already proven given that \(w(U(S-S)) \le w (U(\mathbbm {R}^N)) \le \sqrt{N} + c''\) for an absolute constant \(c''\) (see, e.g., [46, Ex. 7.5.7]). Simplifying using that \(N / m_2 \ge 1\) finishes the job. \(\square \)

Lemma A.2 proposes that the matrix B in the definition of E in (1) be chosen as a sub-Gaussian random matrix. Indeed, it demonstrates that doing so will at least partially fulfill the requirements of Lemma A.1 with high probability. Our next lemma proposes an auspicious choice for the remaining matrix \(A \in \mathbbm {R}^{m_1 \times m_1^2}\).

Lemma A.3

Fix \(p,\epsilon \in (0,1/3)\), a finite set \({\tilde{S}} \subset \mathbbm {R}^N\), \(K \in [1,N^{{1}/{4}})\), and suppose that \(m_1 \in \mathbbm {Z}^+\) satisfies

$$\begin{aligned} \sqrt{N}\ge m_1\ge \frac{c K^2}{\epsilon ^2} \ln \frac{N |{\tilde{S}}|}{p} \ln \frac{N}{p}\ln ^2\frac{\ln ( N |{\tilde{S}}| / p) K^2}{\epsilon }, \end{aligned}$$

where \(c \in \mathbbm {R}^+\) is an absolute constant. Next, let \(U \in \mathbbm {R}^{m_1^2 \times m_1^2}\) be a unitary matrix with BOS constant \(m_1\max \nolimits _{k,t}|u_{t,k}|\le K\), \(D\in \{0,-1,1\}^{m_1^2\times m_1^2}\) is a diagonal matrix with i.i.d. \(\pm 1\) Rademacher random variables on its diagonal, and \(R \in \{ 0,1 \}^{m_1 \times m_1^2}\) is \(m_1\) rows independently selected uniformly at random from the \(m_1^2 \times m_1^2\) identity matrix; Set \(A := \sqrt{m_1}\, R U D\). Then, \(\Vert A \Vert \le m_1\) always. Furthermore, A will be an \(\epsilon \)-JL map of \(P_j {\tilde{S}}\) into \(\mathbbm {R}^{m_1}\) for all \(j \in [N/m_1^2]_0\) with probability at least \(1 - p\).

Proof

Due to the unitary nature of both U and all admissible D we have

where \(\Vert R \Vert _1 := \max \limits _{1 \le j \le m_1^2} \sum \nolimits _{\ell = 1}^{m_1} |R_{\ell ,j}| \le m_1\) for all admissible R. This proves the claim regarding \(\Vert A \Vert \).

Now fix \(j \in [N/m_1^2]_0\) and let

$$\begin{aligned}{} & {} s := 16 \ln \frac{ 8 e N |{\tilde{S}}|}{p} \ge \mathop {\max \limits _{j \in [N/m_1^2]_0}} 16 \ln \frac{8 N|P_j{\tilde{S}}|}{m_1^2 p}. \end{aligned}$$

For this choice of s [24, Thm. 9.36] guarantees that A will be an \(\epsilon \)-JL map of \(P_j {\tilde{S}}\) into \(\mathbbm {R}^{m_1}\) with probability at least \(1 - p/(2N/m_1^2)\) provided that \(\sqrt{m_1}\,RU\) has the RIP of order \((2s,\epsilon /4)\). The union bound then guarantees that A will be an \(\epsilon \)-JL map of \(P_j {\tilde{S}}\) into \(\mathbbm {R}^{m_1}\) for all \(j \in [N/m_1^2]_0\) with probability at least \(1-p/2\). To finish, by a final application of the union bound it suffices to prove that \(\sqrt{m_1}\,RU\) will indeed have the RIP of order \((2s,\epsilon /4)\) with probability at least \(1-p/2\). This RIP condition is provided by Corollary 2.4 for any BOS matrix \(({m_1}/{\sqrt{m'}}) R'U \in \mathbbm {C}^{m' \times m_1^2}\) with at least

$$\begin{aligned} m' \ge m_{\min } := \left\lceil \frac{c K^2}{\epsilon ^2} \ln \frac{N|{\tilde{S}}|}{p}\ln \frac{m_1}{p}\ln ^2\frac{\ln (N|{\tilde{S}}|/p) K^2}{\epsilon }\right\rceil \end{aligned}$$

rows, where \(c \in \mathbbm {R}^+\) is a sufficiently large absolute constant. Note that our assumed bounds on \(m_1\) guarantee that \(m_1 \ge m_{\min }\). Furthermore, if \(m_1 > m_{\min }\) we can simply increase \(m'\) to \(m_1\) without losing the desired RIP condition. \(\square \)

We are now prepared to prove the main result of this section.

Theorem A.1

Let \(S \subset U(\mathbbm {R}^N)\), \(K \in [1,N^{1/4})\), \(\epsilon \in (0,1/3)\), \(p \in (e^{-N},1/3)\), and fix a sequence \(X = X_1,\dots \) of i.i.d. mean zero, sub-Gaussian random variables from which to draw the entries of B in (1). Next, suppose that \(m_1 \in \mathbbm {Z}^+\) satisfies

$$\begin{aligned} \sqrt{N}\ge m_1\ge \frac{c_2 K^2}{\epsilon ^2}\ln \frac{N{\mathcal {N}}(S,{\epsilon }/{c_1 N})}{p}\ln \frac{N}{p}\ln ^2\biggl (\frac{ K^2}{\epsilon }\ln \frac{N {\mathcal {N}}(S,{\epsilon }/{c_1 N})}{p}\biggr ), \end{aligned}$$

and that \(m_2 \in \mathbbm {Z}^+\) satisfies

$$\begin{aligned} m_1 \ge m_2 \ge c_3 \epsilon ^{-2} \ln \frac{{\mathcal {N}}(S, \delta )}{p} \end{aligned}$$

for \(\delta := c_4 \epsilon /(m_1( w(U(S-S)) + \sqrt{\ln (1/p)}))\), where \(c_1, c_2, c_3, c_4 \in \mathbbm {R}^+\) are absolute constants. Finally, choose \(A \in \mathbbm {R}^{m_1 \times m_1^2}\) and \(B \in \mathbbm {R}^{m_2 \times N/m_1}\) in (1) such that:

  1. (i)

    \(A := \sqrt{m_1}\,R U D\) where \(U \in \mathbbm {R}^{m_1^2 \times m_1^2}\) is a unitary matrix with BOS constant \(m_1\max \nolimits _{k,t}|u_{t,k}| \le K\), \(D \in \{ 0, -1, 1 \}^{m_1^2 \times m_1^2}\) is a diagonal matrix with i.i.d. \(\pm 1\) Rademacher random variables on its diagonal, and \(R \in \{ 0,1 \}^{m_1 \times m_1^2}\) is \(m_1\) rows independently selected uniformly at random from the \(m_1^2 \times m_1^2\) identity matrix;

  2. (ii)

    B has i.i.d. mean zero, sub-Gaussian entries drawn according to the first \(m_2 N / m_1\) random variables in X.

Then, \(E =BC/{\sqrt{m_2}} \in \mathbbm {R}^{m_2 \times N}\) will be an \(\epsilon \)-JL map of S into \(\mathbbm {R}^m_2\) with probability at least \(1-p\). Furthermore, if \(A \in \mathbbm {R}^{m_1 \times m_1^2}\) has an \(m_1^2f(m_1)\)-time matrix-vector multiplication algorithm, then E will have an \({\mathcal {O}}(Nf(m_1))\)-time matrix-vector multiply.

Proof

Note the stated result follows from Lemma A.1 provided that its assumptions (a) and (b) both hold with \(\epsilon \leftarrow \epsilon /14\) and \(\delta \) sufficiently small. Hence, we seek to establish that both of these assumptions will simultaneously hold with probability at least \(1-p\) for our choices of A and B above. We will use Lemmas A.2 and A.3 to accomplish this objective below, thereby proving the theorem.

To begin, we will apply Lemma A.2 with \(S \leftarrow S\), \(p \leftarrow p/3\), \(\epsilon \leftarrow \epsilon / 14\), and \(S_C \leftarrow C{\mathcal {C}}_{\delta }\) where \({\mathcal {C}}_\delta \subset S\) is a minimal \(\delta \)-cover of S. In doing so we note that \(c_1, c_2, c_3\) in Lemma A.2 will be absolute constants given X.Footnote 7 As a consequence we learn that both the event

$$\begin{aligned} {\mathcal {E}}_{(c)} := \biggl \{\frac{1}{\sqrt{m_2}} B\ \text {is an } \frac{\epsilon }{14}\text {-JL map of }C {\mathcal {C}}_{\delta }\text { into } \mathbbm {R}^{m_2} \biggr \}, \end{aligned}$$

and

$$\begin{aligned} \begin{aligned} a_E&\le \sup _{\textbf{x} \in U(S - S)} \Vert E \textbf{x} \Vert _2+1 \le cm_1\left( \frac{ w(U(S-S)) + \sqrt{\ln (2/p)}}{\sqrt{m_2}} + 1\right) \\&\le c' m_1\left( w(U(S-S)) + \sqrt{\ln \frac{1}{p}}\,\right) =: a'_E\le c_1 N, \end{aligned} \end{aligned}$$
(47)

will simultaneously hold with probability at least \(1-p/3\), where \(c, c', c_1\) are absolute constants. In (47) we have used the assumptions that \(m_1 \le \sqrt{N}\) and \(1/p\le e^N\) as well as the fact that \(\Vert A\Vert \le m_1\) always (see Lemma A.3), and that \(w(U(S-S)) \le \sqrt{N} + c''\) for an absolute constant \(c''\) (see, e.g., [46, Ex. 7.5.7]). Furthermore, we note that (47) implies that \({\epsilon }/{c_1 N} \le \delta = {c' c_4 \epsilon }/{a_E'} \le {\epsilon }/{a_E}\) holds provided that, e.g., \(c_4\) is chosen to be \(1/c'\).

Next, Lemma A.3 with \(p \leftarrow p/3\), \(\epsilon \leftarrow \epsilon / 14\), \({\tilde{S}} \leftarrow {\mathcal {C}}_{\delta }\), \(K \leftarrow K\) reveals that

$$\begin{aligned} {\mathcal {E}}_{(b)} :=\bigl \{A\text { is an }(\epsilon /14)\text {-JL map of }P_j {\mathcal {C}}_{\delta }\text { into }\mathbbm {R}^{m_1}\text { for all }j \in [N/m_1^2]_0\bigr \} \end{aligned}$$

will also hold with probability at least \(1 - p/3\) provided that (47) holds. Here we have used the fact that \({\mathcal {N}}(S,{\epsilon }/{c_1 N}) \ge {\mathcal {N}}(S, \delta ) = |{\mathcal {C}}_{\delta }|\) when \(\delta \ge \epsilon /c_1N\). As a consequence we can finally see that both assumptions (a) and (b) of Lemma A.1 with \(\epsilon \leftarrow \epsilon / 14\) will hold with probability at least \(1-p\) since

$$\begin{aligned} \mathbbm {P}[ {\mathcal {E}}_{(c)} \cap (47)\cap {\mathcal {E}}_{(b)}]&\ge 1 - \mathbbm {P}[ \overline{(47) \cap {\mathcal {E}}_{(b)}}]-\frac{p}{3}=\mathbbm {P}[(47) \cap {\mathcal {E}}_{(b)}] - \frac{p}{3}\\&= \mathbbm {P}[{\mathcal {E}}_{(b)} |(47)] \cdot \mathbbm {P}[(47)] -\frac{p}{3} \ge \biggl (1-\frac{p}{3}\biggr )\mathbbm {P}[ (47)] -\frac{p}{3} \\&\ge \biggl (1-\frac{p}{3}\biggr )^{2} -\frac{p}{3} > 1- p. \end{aligned}$$

Lemma A.1 now finishes the proof. The runtime result follows from Lemma 1.1. \(\square \)

Note that an application of Theorem A.1 requires a valid choice of \(m_1\) to be made. This will effectively limit the sizes of the sets which we can embed below. In order to make the discussion of this limitation a bit easier below we can further simplify the lower bound for \(m_1\) by noting that for all fixed \(S \subset U(\mathbbm {R}^N)\), \(K \in [1,N^{{1}/{4}})\), \(\epsilon \in (0, 1/3)\), and \(p \in (e^{-N},{1}/{3})\) we will have

$$\begin{aligned} \ln \frac{N}{p}\ln ^2 \left( \frac{K^2}{\epsilon }\ln \frac{N {\mathcal {N}}(S,{\epsilon }/{c_1 N})}{p}\right) \le \ln ^3 \frac{N K^2}{\epsilon p}\le c \ln ^3 \frac{N}{\epsilon p} \end{aligned}$$

for an absolute constant \(c \in \mathbbm {R}^+\), provided that \({\mathcal {N}}(S,{\epsilon }/{c_1 N}) \le p e^N/N\). As a consequence, we may weaken the lower bound for \(m_1\) and instead focus on the smaller interval

$$\begin{aligned} \sqrt{N} \ge m_1 \ge \frac{c''_2 K^2}{\epsilon ^2}\ln \frac{{\mathcal {N}}(S,{\epsilon }/{c_1 N})}{p}\ln ^4 \frac{N}{\epsilon p}\ge \frac{c'_2 K^2}{\epsilon ^2}\ln \frac{ N {\mathcal {N}}(S,{\epsilon }/{c_1 N})}{p}\ln ^3\frac{N}{\epsilon p} \end{aligned}$$

for simplicity. Further assuming that K is upper bounded by a universal constant below (as it will be in all subsequent applications) we can see that our smaller range for \(m_1\) will be nonempty when

$$\begin{aligned} {\mathcal {N}}(S, \delta ) \le {\mathcal {N}} \biggl (S, \frac{\epsilon }{c_1 N} \biggr ) \le p e^{c \epsilon ^2 \sqrt{N}/\ln ^4({N}/{\epsilon p})} \end{aligned}$$
(48)

for a sufficiently small absolute constant \(c \in \mathbbm {R}^+\). We will use (48) in place of (9) below to limit the sizes of the sets that we embed so that Theorem A.1 can always be applied with a valid minimal choice of

$$\begin{aligned} m_1 \le \frac{c_2''' K^2}{\epsilon ^2} \ln \frac{{\mathcal {N}}(S,{\epsilon }/{c_1 N}) }{p}\ln ^4\frac{N}{\epsilon p}\le \sqrt{N} \end{aligned}$$

below.

1.1 Theorem 3.4 as a Corollary of Theorem A.1

As above, we let B have, e.g., i.i.d. Rademacher entries and will choose \(U\in {\mathbbm {R}}^{m_1^2\times m_1^2}\) to be, e.g., a Hadamard or DCT matrix (see, e.g., [24, Sect. 12.1]). Making either choice for U will endow A with an \({\mathcal {O}}(m_1^2\log m_1)\)-time matrix vector multiply via FFT-techniques, and will also ensure that \(K=\sqrt{2}\) always suffices. As a result, we note that \(f(m_1)= {\mathcal {O}}(\log m_1)\) in Theorem A.1.

We may therefore apply Theorem A.1 with S as in (41). To upper bound the final embedding dimension we note that we may safely choose

$$\begin{aligned} m_2 \ge \frac{ c_3}{\epsilon ^2} \ln \frac{{\mathcal {N}}(S,{\epsilon }/{c_1 N})}{p}\ge \frac{c_3}{\epsilon ^2} \ln \frac{{\mathcal {N}}(S, \delta )}{p}. \end{aligned}$$

Furthermore, applying Lemmas 3.2 and 3.3 we can further see that

$$\begin{aligned} \biggl ( \frac{eN}{s} \biggr )^{s} \biggl ( \frac{3c_1 N}{\epsilon } \biggr )^{s} \ge {\mathcal {N}}\biggl (S, \frac{\epsilon }{c_1 N}\biggr ). \end{aligned}$$

The stated lower bound on m now follows after adjusting and simplifying constants. Finally, and most crucially, the condition it suffices for s to satisfy now also follows from (48).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iwen, M.A., Schmidt, B. & Tavakoli, A. On Fast Johnson–Lindenstrauss Embeddings of Compact Submanifolds of \(\mathbbm {R}^N\) with Boundary. Discrete Comput Geom 71, 498–555 (2024). https://doi.org/10.1007/s00454-022-00420-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-022-00420-w

Keywords

Mathematics Subject Classification