Abstract
In this paper, we study the number of compact sets needed in an infinite family of convex sets with a local intersection structure to imply a bound on its piercing number, answering a conjecture of Erdős and Grünbaum. Namely, if in an infinite family of convex sets in \(\mathbb {R}^d\) we know that out of every \(p\) there are \(q\) which are intersecting, we determine if having some compact sets implies a bound on the number of points needed to intersect the whole family. We also study variations of this problem.
Similar content being viewed by others
References
Alon, N., Kleitman, D.J.: Piercing convex sets and the Hadwiger-Debrunner \((p, q)\)-problem. Adv. Math. 96(1), 103–112 (1992)
Boltyanski, V., Soifer, A.: Geometric études in Combinatorial Mathematics. Center for Excellence in Mathematical Education, Colorado Springs (1991)
Diestel, R.: Graph Theory: Graduate Texts in Math., vol. 173. Springer (2005)
Eckhoff, J.: A survey of the Hadwiger-Debrunner \((p, q)\)-problem. In: Aronov, B., Basu, S., Pach, J., Sharir, M. (eds.) Discrete and Computational Geometry. The Goodman-Pollack Festschrift. Algorithms and Combinatorics, vol. 25, pp. 347–377. Springer, Heidelberg (2003)
Erdős, P., Gallai, T.: On the minimal number of vertices representing the edges of a graph. Magyar Tud Akad. Mat. Kutató Int. Közl. 6, 181–203 (1961)
Hadwiger, H., Debrunner, H.: Combinatorial geometry in the plane, Holt, Rinehart and Winston, New York. vii+113pp, Translated by Victor Klee. With a new chapter and other additional material supplied by the translator (1964)
Hadwiger, H., Debrunner, H.E.: Über eine Variante zum Hellyschen Satz. Arch. Math. 8(4), 309–313 (1957)
Helly, E.: Über Mengen konvexer Körper mit gemeinschaftlichen Punkte. Jahresber. Dtsch. Math.-Ver. 32, 175–176 (1923)
Kleitman, D.J., Gyárfás, A., Tóth, G.: Convex sets in the plane with three of every four meeting. Combinatorica 21(2), 221–232 (2001)
Kynčl, J., Tancer, M.: The maximum piercing number for some classes of convex sets with the \((4,3)\)-property. Electron. J. Comb. 15(R27), 1 (2008)
Montejano, L., Oliveros, D.: Tolerance in Helly-type theorems. Discrete Comput. Geom. 45(2), 348–357 (2011)
Müller, T.: A counterexample to a conjecture of Grünbaum on piercing convex sets in the plane. Discrete Math. 313(24), 2868–2871 (2013)
Soifer, A.: The Mathematical Coloring Book: Mathematics of Coloring and the Colorful Life of Its Creators. Springer, New York (2009)
Tuza, Z.: Minimum number of elements representing a set system of given rank. J. Comb. Theory, Ser. A 52(1), 84–89 (1989)
Tuza, Z.: Applications of the set-pair method in extremal hypergraph theory. In: Frankl, P. (ed.), Extremal Problems for Finite Sets, Conference, Visegrád (Budapest), Bolyai Soc. Math. Stud., vol. 3. János Bolai Math. Soc. 1994, 479–514 (1991)
Acknowledgments
The authors wish to acknowledge the support of CONACYT under project 166306 and support of PAPITT-UNAM under projects IN112614 and IA102013.
Author information
Authors and Affiliations
Corresponding author
Additional information
Editor in Charge: János Pach.
Rights and permissions
About this article
Cite this article
Montejano, A., Montejano, L., Roldán-Pensado, E. et al. About an Erdős–Grünbaum Conjecture Concerning Piercing of Non-bounded Convex Sets. Discrete Comput Geom 53, 941–950 (2015). https://doi.org/10.1007/s00454-015-9664-3
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00454-015-9664-3